Computational Analysis of Vertebral Body for Compression Fracture Using Texture and Shape Features

Pub Date : 2021-10-01 DOI:10.4018/ijcini.20211001.oa21
A. Arpitha, Lalitha Rangarajan
{"title":"Computational Analysis of Vertebral Body for Compression Fracture Using Texture and Shape Features","authors":"A. Arpitha, Lalitha Rangarajan","doi":"10.4018/ijcini.20211001.oa21","DOIUrl":null,"url":null,"abstract":"The primary goal in this paper is to automate radiological measurements of Vertebral Body (VB) in Magnetic Resonance Imaging (MRI) spinal scans. It starts by preprocessing the images, then detect and localize the VB regions, next segment and label VBs and finally classify each VB into three cases as being normal or fractured in case 1, benign or malignant in case 2 and normal, benign or malignant in case 3. The task is accomplished by extracting and combining distinct features of VB such as boundary, gray levels, shape and texture features using various Machine Learning techniques. The class balance deficit dataset towards normal and fractures is balanced by data augmentation which provides an enriched dataset for the learning system to perform precise differentiation between classes. On a clinical spine dataset, the method is tested and validated on 535 VBs for segmentation attaining an average accuracy 94.59% and on 315 VBs for classification with an average accuracy of 96.07% for case 1, 93.23% for case 2 and 92.3% for case 3.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijcini.20211001.oa21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The primary goal in this paper is to automate radiological measurements of Vertebral Body (VB) in Magnetic Resonance Imaging (MRI) spinal scans. It starts by preprocessing the images, then detect and localize the VB regions, next segment and label VBs and finally classify each VB into three cases as being normal or fractured in case 1, benign or malignant in case 2 and normal, benign or malignant in case 3. The task is accomplished by extracting and combining distinct features of VB such as boundary, gray levels, shape and texture features using various Machine Learning techniques. The class balance deficit dataset towards normal and fractures is balanced by data augmentation which provides an enriched dataset for the learning system to perform precise differentiation between classes. On a clinical spine dataset, the method is tested and validated on 535 VBs for segmentation attaining an average accuracy 94.59% and on 315 VBs for classification with an average accuracy of 96.07% for case 1, 93.23% for case 2 and 92.3% for case 3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
基于纹理和形状特征的压缩性骨折椎体计算分析
本文的主要目标是在磁共振成像(MRI)脊柱扫描中实现椎体(VB)放射学测量的自动化。首先对图像进行预处理,然后对VB区域进行检测和定位,然后对VB进行分割和标记,最后将每个VB分为三种情况:病例1为正常或断裂,病例2为良性或恶性,病例3为正常、良性或恶性。该任务是通过使用各种机器学习技术提取和组合VB的不同特征,如边界、灰度、形状和纹理特征来完成的。通过数据增强平衡了正常和断裂的班级平衡赤字数据集,为学习系统提供了丰富的数据集,以实现班级之间的精确区分。在临床脊柱数据集上,该方法在535个VBs上进行了分割测试和验证,平均准确率为94.59%,在315个VBs上进行了分类测试,病例1的平均准确率为96.07%,病例2的平均准确率为93.23%,病例3的平均准确率为92.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1