Low Frequency Cyclic Mechanical Loading of Till Deposits from Northern Germany under Oedometric Conditions

IF 2.2 4区 工程技术 Q3 ENGINEERING, GEOLOGICAL Environmental geotechnics Pub Date : 2023-06-20 DOI:10.3390/geotechnics3020029
H. Hailemariam, F. Wuttke
{"title":"Low Frequency Cyclic Mechanical Loading of Till Deposits from Northern Germany under Oedometric Conditions","authors":"H. Hailemariam, F. Wuttke","doi":"10.3390/geotechnics3020029","DOIUrl":null,"url":null,"abstract":"Glacial deposits are of significant importance to geotechnical engineers and geologists in northern Europe, North America, and Northern Asia, as vast areas of these land surfaces were historically covered with ice leading to the formation of a wide variety of till deposits. The use of these areas for various engineering purposes warrants their subjection to mechanical loads (of static and cyclic forms) from manmade structures, as well as natural hazards such as earthquakes. This paper focuses on the experimental investigation of the cyclic mechanical loading behavior of two glacial tills from northern Germany under one-dimensional loading or oedometric conditions, and in different soil wetting conditions. The experimental results show a significant dependence of the cyclic mechanical response of the glacial tills on wetting condition and number of loading cycles. The recorded values of accumulated plastic strains of the glacial tills generally increase with an increase in wetting or moisture content, with the highest measured value for the two tills being around 3.9% after 19 cycles of loading. The findings of the experimental cyclic mechanical tests of the glacial tills are discussed in view of the intrinsic soil behavior and fabric.","PeriodicalId":11823,"journal":{"name":"Environmental geotechnics","volume":"48 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental geotechnics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/geotechnics3020029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Glacial deposits are of significant importance to geotechnical engineers and geologists in northern Europe, North America, and Northern Asia, as vast areas of these land surfaces were historically covered with ice leading to the formation of a wide variety of till deposits. The use of these areas for various engineering purposes warrants their subjection to mechanical loads (of static and cyclic forms) from manmade structures, as well as natural hazards such as earthquakes. This paper focuses on the experimental investigation of the cyclic mechanical loading behavior of two glacial tills from northern Germany under one-dimensional loading or oedometric conditions, and in different soil wetting conditions. The experimental results show a significant dependence of the cyclic mechanical response of the glacial tills on wetting condition and number of loading cycles. The recorded values of accumulated plastic strains of the glacial tills generally increase with an increase in wetting or moisture content, with the highest measured value for the two tills being around 3.9% after 19 cycles of loading. The findings of the experimental cyclic mechanical tests of the glacial tills are discussed in view of the intrinsic soil behavior and fabric.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
德国北部土壤层在测量条件下的低频循环机械载荷
冰川沉积物对北欧、北美和北亚的地质工程师和地质学家来说意义重大,因为这些陆地表面的大片地区在历史上被冰覆盖,从而形成了各种各样的沉积物。这些区域用于各种工程目的,保证了它们受到来自人造结构的机械载荷(静态和循环形式)以及地震等自然灾害的影响。本文对德国北部两个冰碛体在一维加载、计量加载和不同土壤湿润条件下的循环力学加载特性进行了试验研究。试验结果表明,冰碛体的循环力学响应与湿润条件和加载循环次数有显著的相关性。冰碛体累积塑性应变的记录值一般随湿含量或含水率的增加而增加,经过19次循环加载后,两个冰碛体的最高测量值在3.9%左右。从土的内在特性和结构特征出发,讨论了冰碛循环力学试验的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental geotechnics
Environmental geotechnics Environmental Science-Water Science and Technology
CiteScore
6.20
自引率
18.20%
发文量
53
期刊介绍: In 21st century living, engineers and researchers need to deal with growing problems related to climate change, oil and water storage, handling, storage and disposal of toxic and hazardous wastes, remediation of contaminated sites, sustainable development and energy derived from the ground. Environmental Geotechnics aims to disseminate knowledge and provides a fresh perspective regarding the basic concepts, theory, techniques and field applicability of innovative testing and analysis methodologies and engineering practices in geoenvironmental engineering. The journal''s Editor in Chief is a Member of the Committee on Publication Ethics. All relevant papers are carefully considered, vetted by a distinguished team of international experts and rapidly published. Full research papers, short communications and comprehensive review articles are published under the following broad subject categories: geochemistry and geohydrology, soil and rock physics, biological processes in soil, soil-atmosphere interaction, electrical, electromagnetic and thermal characteristics of porous media, waste management, utilization of wastes, multiphase science, landslide wasting, soil and water conservation, sensor development and applications, the impact of climatic changes on geoenvironmental, geothermal/ground-source energy, carbon sequestration, oil and gas extraction techniques, uncertainty, reliability and risk, monitoring and forensic geotechnics.
期刊最新文献
Ecological flexible protection method of expansive soil slope under rainfall Briefing: Intensive inland aquaculture ponds: challenges and research opportunities 1D Damage constitutive model and small strain characteristics of fly ash–cementitious iron tailings powder under static and dynamic loading Experimental investigation on gas migration behaviour in unsaturated sand-clay mixture Dry shrinkage cracking and permeability of biopolymer-modified clay under dry-wet cycles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1