WR-One2Set: Towards Well-Calibrated Keyphrase Generation

Binbin Xie, Xiangpeng Wei, Baosong Yang, Huan Lin, Jun Xie, Xiao-Ling Wang, M. Zhang, Jinsong Su
{"title":"WR-One2Set: Towards Well-Calibrated Keyphrase Generation","authors":"Binbin Xie, Xiangpeng Wei, Baosong Yang, Huan Lin, Jun Xie, Xiao-Ling Wang, M. Zhang, Jinsong Su","doi":"10.48550/arXiv.2211.06862","DOIUrl":null,"url":null,"abstract":"Keyphrase generation aims to automatically generate short phrases summarizing an input document. The recently emerged ONE2SET paradigm (Ye et al., 2021) generates keyphrases as a set and has achieved competitive performance. Nevertheless, we observe serious calibration errors outputted by ONE2SET, especially in the over-estimation of ∅ token (means “no corresponding keyphrase”). In this paper, we deeply analyze this limitation and identify two main reasons behind: 1) the parallel generation has to introduce excessive ∅ as padding tokens into training instances; and 2) the training mechanism assigning target to each slot is unstable and further aggravates the ∅ token over-estimation. To make the model well-calibrated, we propose WR-ONE2SET which extends ONE2SET with an adaptive instance-level cost Weighting strategy and a target Re-assignment mechanism. The former dynamically penalizes the over-estimated slots for different instances thus smoothing the uneven training distribution. The latter refines the original inappropriate assignment and reduces the supervisory signals of over-estimated slots. Experimental results on commonly-used datasets demonstrate the effectiveness and generality of our proposed paradigm.","PeriodicalId":74540,"journal":{"name":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","volume":"32 1","pages":"7283-7293"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Empirical Methods in Natural Language Processing. Conference on Empirical Methods in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2211.06862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Keyphrase generation aims to automatically generate short phrases summarizing an input document. The recently emerged ONE2SET paradigm (Ye et al., 2021) generates keyphrases as a set and has achieved competitive performance. Nevertheless, we observe serious calibration errors outputted by ONE2SET, especially in the over-estimation of ∅ token (means “no corresponding keyphrase”). In this paper, we deeply analyze this limitation and identify two main reasons behind: 1) the parallel generation has to introduce excessive ∅ as padding tokens into training instances; and 2) the training mechanism assigning target to each slot is unstable and further aggravates the ∅ token over-estimation. To make the model well-calibrated, we propose WR-ONE2SET which extends ONE2SET with an adaptive instance-level cost Weighting strategy and a target Re-assignment mechanism. The former dynamically penalizes the over-estimated slots for different instances thus smoothing the uneven training distribution. The latter refines the original inappropriate assignment and reduces the supervisory signals of over-estimated slots. Experimental results on commonly-used datasets demonstrate the effectiveness and generality of our proposed paradigm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
WR-One2Set:迈向校准的关键字生成
关键词生成旨在自动生成总结输入文档的短语。最近出现的ONE2SET范式(Ye et al., 2021)将关键字作为一个集合生成,并取得了具有竞争力的性能。然而,我们观察到ONE2SET输出了严重的校准误差,特别是在对∅token(意为“没有对应的关键字”)的高估上。在本文中,我们深入分析了这一限制,并找出了两个主要原因:1)并行生成必须引入过多的∅作为填充令牌到训练实例中;2)各槽分配目标的训练机制不稳定,进一步加剧了∅令牌高估。为了使模型得到很好的校准,我们提出了WR-ONE2SET,它通过自适应实例级成本加权策略和目标重新分配机制扩展了ONE2SET。前者动态地惩罚不同实例的高估槽,从而平滑不均匀的训练分布。后者改进了原有的不合理分配,减少了高估时隙的监控信号。在常用数据集上的实验结果证明了我们提出的范式的有效性和通用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records. Two Directions for Clinical Data Generation with Large Language Models: Data-to-Label and Label-to-Data. Hierarchical Pretraining on Multimodal Electronic Health Records. An Integrative Survey on Mental Health Conversational Agents to Bridge Computer Science and Medical Perspectives. A Comprehensive Evaluation of Biomedical Entity Linking Models.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1