Prakash Bhuyar, Dang Diem Hong, Emelina Mandia, Mohd Hasbi Ab. Rahim, Gaanty Pragas Maniam, Natanamurugaraj Govindan
{"title":"Desalination of Polymer and Chemical industrial wastewater by using green photosynthetic microalgae, Chlorella sp.","authors":"Prakash Bhuyar, Dang Diem Hong, Emelina Mandia, Mohd Hasbi Ab. Rahim, Gaanty Pragas Maniam, Natanamurugaraj Govindan","doi":"10.54279/mijeec.v1i3.244924","DOIUrl":null,"url":null,"abstract":"In this investigation microalgae Chlorella sp. were isolated and identified from the industrial wastewater. Microalgae species was mass cultivated by using BG11 medium. After 30 days, mixture of Chlorella with different wastewater A, B, C, D, E and F with different ration of Chlorella: wastewater which were 1:6, 1:1, and 2:1. Incubated at room temperature at illuminated area. Dissolved oxygen, TDS, salinity, pH, optical density, oxygen saturation and conductivity were measured for day 0, 10, 20 and 30. For microalgae in wastewater A and C, value of pH, salinity, dissolved oxygen, oxygen saturation, conductivity, salinity and TDS did not change while absorbance value decreased from day 0 to day 30. For wastewater B, D, E and F, the absorbance and pH value increase for all concentration from day 0 to day 30. The highest oxygen saturation after 30 days for wastewater B, D, E and F was at concentration 1:6, 2:1 and 1:1 respectively. The highest dissolved oxygen for wastewater B, D and E was at concentration 1:1 and F was at 2:1. The lowest conductivity, salinity and TDS for wastewater B, C, D and F were all at the concentration of 2:1. The result showed that, Chlorella managed to reduce the salinity for wastewater B, C, D and F, at concentration of 2:1 which were 3.67 %, 4.53 %, 5.4 % and 4.91 % respectively.","PeriodicalId":18176,"journal":{"name":"Maejo International Journal of Energy and Environmental Communication","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Maejo International Journal of Energy and Environmental Communication","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54279/mijeec.v1i3.244924","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
In this investigation microalgae Chlorella sp. were isolated and identified from the industrial wastewater. Microalgae species was mass cultivated by using BG11 medium. After 30 days, mixture of Chlorella with different wastewater A, B, C, D, E and F with different ration of Chlorella: wastewater which were 1:6, 1:1, and 2:1. Incubated at room temperature at illuminated area. Dissolved oxygen, TDS, salinity, pH, optical density, oxygen saturation and conductivity were measured for day 0, 10, 20 and 30. For microalgae in wastewater A and C, value of pH, salinity, dissolved oxygen, oxygen saturation, conductivity, salinity and TDS did not change while absorbance value decreased from day 0 to day 30. For wastewater B, D, E and F, the absorbance and pH value increase for all concentration from day 0 to day 30. The highest oxygen saturation after 30 days for wastewater B, D, E and F was at concentration 1:6, 2:1 and 1:1 respectively. The highest dissolved oxygen for wastewater B, D and E was at concentration 1:1 and F was at 2:1. The lowest conductivity, salinity and TDS for wastewater B, C, D and F were all at the concentration of 2:1. The result showed that, Chlorella managed to reduce the salinity for wastewater B, C, D and F, at concentration of 2:1 which were 3.67 %, 4.53 %, 5.4 % and 4.91 % respectively.