Ankit Sharma, R. Khangarot, S. Chattopadhyay, K. Misra, R. Misra, P. D. Babu
{"title":"Band Gap Reduction and Improved Ferromagnetic Ordering via Bound Magnetic Polarons in Zn(Al, Ce)O Nanoparticles","authors":"Ankit Sharma, R. Khangarot, S. Chattopadhyay, K. Misra, R. Misra, P. D. Babu","doi":"10.1080/10667857.2022.2151114","DOIUrl":null,"url":null,"abstract":"ABSTRACT Polycrystalline nanoparticles of Al-doped and Ce-co-doped ZnO were processed through sol-gel co-precipitation. Crystallite sizes determined from XRD were in the range of 10.90 to 48.77 nm. FTIR spectra indicated a stretching mode of Zn-O bond. The insertion of Al and Ce at Zn-O site created Al-O and Ce-O bonds. UV-vis spectra favoured the formation of impurity levels by doping and co-doping. Their overlapping with the conduction band edge led to the reduction of band-gap. Blue-green emission which arises from radiative recombination of a photogenerated hole with an electron occupying oxygen vacancy was observed in photoluminescence spectra. FESEM suggested granular growth in undoped ZnO which changed to diverse structures such as nano-bar and cluster of elongated grains. Significant improvement in room temperature ferromagnetism (RTFM) was noticed by co-doping of Ce in Al-doped ZnO. Formation of bound magnetic polarons (Ce3+-Vo-Ce3+) was the primary mechanism responsible for the improvement in RTFM.","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"749 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2022-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2022.2151114","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 2
Abstract
ABSTRACT Polycrystalline nanoparticles of Al-doped and Ce-co-doped ZnO were processed through sol-gel co-precipitation. Crystallite sizes determined from XRD were in the range of 10.90 to 48.77 nm. FTIR spectra indicated a stretching mode of Zn-O bond. The insertion of Al and Ce at Zn-O site created Al-O and Ce-O bonds. UV-vis spectra favoured the formation of impurity levels by doping and co-doping. Their overlapping with the conduction band edge led to the reduction of band-gap. Blue-green emission which arises from radiative recombination of a photogenerated hole with an electron occupying oxygen vacancy was observed in photoluminescence spectra. FESEM suggested granular growth in undoped ZnO which changed to diverse structures such as nano-bar and cluster of elongated grains. Significant improvement in room temperature ferromagnetism (RTFM) was noticed by co-doping of Ce in Al-doped ZnO. Formation of bound magnetic polarons (Ce3+-Vo-Ce3+) was the primary mechanism responsible for the improvement in RTFM.
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.