Procedural Shape Generation for Multi-dimensional Data Visualization

Q4 Computer Science Computer Graphics World Pub Date : 2000-06-01 DOI:10.2312/vissym19991017
David S. Ebert, Randall M Rohrer, Christopher D Shaw, Pradyut Panda, James M. Kukla, D. Roberts
{"title":"Procedural Shape Generation for Multi-dimensional Data Visualization","authors":"David S. Ebert, Randall M Rohrer, Christopher D Shaw, Pradyut Panda, James M. Kukla, D. Roberts","doi":"10.2312/vissym19991017","DOIUrl":null,"url":null,"abstract":"Visualization of multi-dimensional data is a challenging task. The goal is not the display of multiple data dimensions, but user comprehension of the multi-dimensional data. This paper explores several techniques for perceptually motivated procedural generation of shapes to increase the comprehension of multi-dimensional data. Our glyph-based system allows the visualization of both regular and irregular grids of volumetric data. A glyph’s location, 3D size, color, and opacity encode up to 8 attributes of scalar data per glyph. We have extended the system’s capabilities to explore shape variation as a visualization attribute. We use procedural shape generation techniques because they allow flexibility, data abstraction, and freedom from specification of detailed shapes. We have explored three procedural shape generation techniques: fractal detail generation, superquadrics, and implicit surfaces. These techniques allow from 1 to 14 additional data dimensions to be visualized using glyph shape.","PeriodicalId":51003,"journal":{"name":"Computer Graphics World","volume":"11 1","pages":"375-384"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"80","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics World","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vissym19991017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 80

Abstract

Visualization of multi-dimensional data is a challenging task. The goal is not the display of multiple data dimensions, but user comprehension of the multi-dimensional data. This paper explores several techniques for perceptually motivated procedural generation of shapes to increase the comprehension of multi-dimensional data. Our glyph-based system allows the visualization of both regular and irregular grids of volumetric data. A glyph’s location, 3D size, color, and opacity encode up to 8 attributes of scalar data per glyph. We have extended the system’s capabilities to explore shape variation as a visualization attribute. We use procedural shape generation techniques because they allow flexibility, data abstraction, and freedom from specification of detailed shapes. We have explored three procedural shape generation techniques: fractal detail generation, superquadrics, and implicit surfaces. These techniques allow from 1 to 14 additional data dimensions to be visualized using glyph shape.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向多维数据可视化的程序形状生成
多维数据的可视化是一项具有挑战性的任务。目标不是显示多个数据维度,而是用户对多维数据的理解。本文探讨了几种感知驱动程序生成形状的技术,以增加对多维数据的理解。我们基于字形的系统允许对体积数据的规则和不规则网格进行可视化。字形的位置、3D大小、颜色和不透明度为每个字形编码多达8个标量数据属性。我们扩展了系统的功能,将形状变化作为可视化属性进行探索。我们使用程序形状生成技术,因为它们允许灵活性、数据抽象和免于详细形状的规范。我们探索了三种程序形状生成技术:分形细节生成、超二次曲面和隐式曲面。这些技术允许使用字形形状可视化1到14个额外的数据维度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Computer Graphics World
Computer Graphics World 工程技术-计算机:软件工程
CiteScore
0.03
自引率
0.00%
发文量
0
审稿时长
>12 weeks
期刊最新文献
TARig: Adaptive template-aware neural rigging for humanoid characters Numerical approximations for energy preserving microfacet models Image super-resolution with multi-scale fractal residual attention network An overview on Meta-learning approaches for Few-shot Weakly-supervised Segmentation Omnidirectional visual computing: Foundations, challenges, and applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1