Xiaojun Zhu, Wen Liu, Dan Sun, Guoan Zhang, Li Zou, Zhipeng Liang, Zhanghua Han, Yue-chun Shi
{"title":"High-Sensitive Acoustic Sensor Based on Microfiber Mach–Zehnder Interferometer with Tapered Polarization-Maintaining Fiber","authors":"Xiaojun Zhu, Wen Liu, Dan Sun, Guoan Zhang, Li Zou, Zhipeng Liang, Zhanghua Han, Yue-chun Shi","doi":"10.1080/01468030.2022.2042626","DOIUrl":null,"url":null,"abstract":"ABSTRACT We propose a high sensitive acoustic sensor based on a microfiber Mach-Zehnder interferometer (MMZI) with tapered polarization-maintaining fiber (PMF). The optical tapering technology is used to taper the PMF. Then, the MMZI is attached to a wood pulp diaphragm (WPD) to form an acoustic sensor, whose curvature will change with the vibration of the diaphragm. Two sensors with different waist diameters are made for performance comparison. Experimental results show that the acoustic sensor can achieve a wideband frequency response range from 200 Hz to 4000 Hz. The responses are flat at frequencies ranging from 200 Hz to 1500 Hz. Moreover, we find that the sensing performance of the acoustic sensor improves with the decrease in its waist diameter. When the waist diameter is 25.72 μm, the response sensitivity of the sensor can reach 42.4 mV/kPa at 2000 Hz, and the minimum detection pressure is 1.24 Pa/√Hz. It provides an effective way to fabricate an acoustic sensor, with low cost, easy integration, and high sensitivity.","PeriodicalId":50449,"journal":{"name":"Fiber and Integrated Optics","volume":"8 1","pages":"41 - 61"},"PeriodicalIF":2.3000,"publicationDate":"2022-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiber and Integrated Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/01468030.2022.2042626","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT We propose a high sensitive acoustic sensor based on a microfiber Mach-Zehnder interferometer (MMZI) with tapered polarization-maintaining fiber (PMF). The optical tapering technology is used to taper the PMF. Then, the MMZI is attached to a wood pulp diaphragm (WPD) to form an acoustic sensor, whose curvature will change with the vibration of the diaphragm. Two sensors with different waist diameters are made for performance comparison. Experimental results show that the acoustic sensor can achieve a wideband frequency response range from 200 Hz to 4000 Hz. The responses are flat at frequencies ranging from 200 Hz to 1500 Hz. Moreover, we find that the sensing performance of the acoustic sensor improves with the decrease in its waist diameter. When the waist diameter is 25.72 μm, the response sensitivity of the sensor can reach 42.4 mV/kPa at 2000 Hz, and the minimum detection pressure is 1.24 Pa/√Hz. It provides an effective way to fabricate an acoustic sensor, with low cost, easy integration, and high sensitivity.
期刊介绍:
Fiber and Integrated Optics , now incorporating the International Journal of Optoelectronics, is an international bimonthly journal that disseminates significant developments and in-depth surveys in the fields of fiber and integrated optics. The journal is unique in bridging the major disciplines relevant to optical fibers and electro-optical devices. This results in a balanced presentation of basic research, systems applications, and economics. For more than a decade, Fiber and Integrated Optics has been a valuable forum for scientists, engineers, manufacturers, and the business community to exchange and discuss techno-economic advances in the field.