Zero Shot Learning via Multi-scale Manifold Regularization

Shay Deutsch, Soheil Kolouri, Kyungnam Kim, Y. Owechko, Stefano Soatto
{"title":"Zero Shot Learning via Multi-scale Manifold Regularization","authors":"Shay Deutsch, Soheil Kolouri, Kyungnam Kim, Y. Owechko, Stefano Soatto","doi":"10.1109/CVPR.2017.562","DOIUrl":null,"url":null,"abstract":"We address zero-shot learning using a new manifold alignment framework based on a localized multi-scale transform on graphs. Our inference approach includes a smoothness criterion for a function mapping nodes on a graph (visual representation) onto a linear space (semantic representation), which we optimize using multi-scale graph wavelets. The robustness of the ensuing scheme allows us to operate with automatically generated semantic annotations, resulting in an algorithm that is entirely free of manual supervision, and yet improves the state-of-the-art as measured on benchmark datasets.","PeriodicalId":6631,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","volume":"30 1","pages":"5292-5299"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"44","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2017.562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 44

Abstract

We address zero-shot learning using a new manifold alignment framework based on a localized multi-scale transform on graphs. Our inference approach includes a smoothness criterion for a function mapping nodes on a graph (visual representation) onto a linear space (semantic representation), which we optimize using multi-scale graph wavelets. The robustness of the ensuing scheme allows us to operate with automatically generated semantic annotations, resulting in an algorithm that is entirely free of manual supervision, and yet improves the state-of-the-art as measured on benchmark datasets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多尺度流形正则化的零射击学习
我们使用基于图的局部多尺度变换的新的流形对齐框架来解决零射击学习。我们的推理方法包括将图(视觉表示)上的节点映射到线性空间(语义表示)上的函数的平滑准则,我们使用多尺度图小波对其进行优化。后续方案的鲁棒性使我们能够使用自动生成的语义注释进行操作,从而产生完全不需要人工监督的算法,并且在基准数据集上提高了最先进的水平。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
FFTLasso: Large-Scale LASSO in the Fourier Domain Semantically Coherent Co-Segmentation and Reconstruction of Dynamic Scenes Coarse-to-Fine Segmentation with Shape-Tailored Continuum Scale Spaces Joint Gap Detection and Inpainting of Line Drawings Wetness and Color from a Single Multispectral Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1