Time series prediction of heavy metal contamination in mining areas based on exponential smoothing model

Yunzhang Rao, Shuitai Xu, Lingyan Xiong
{"title":"Time series prediction of heavy metal contamination in mining areas based on exponential smoothing model","authors":"Yunzhang Rao, Shuitai Xu, Lingyan Xiong","doi":"10.1109/ICIST.2011.5765081","DOIUrl":null,"url":null,"abstract":"Heavy metal contamination in mining areas has the features of time series, so it can be predicted with exponential smoothing model. On the basis of 1995–2007 monitoring data of Copper (Cu) at the surface water monitoring point 500m to the downstream of the sewage outlet in a copper ore, with cubic exponential smoothing method, the predicting model of heavy metal Cu is established through selecting different smoothing coefficient a. After applying the predicting model to predicting the content of Cu in the wastewater 500m to the sewage outlet from 2005 to 2007, it is found that the error of comparing the predicted result with correspondent actual monitoring values is less than 5%, which satisfies the requirements after testing. The predicting result shows that the mining area will be still in the contamination of Cu in the future.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"9 1","pages":"1318-1322"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Heavy metal contamination in mining areas has the features of time series, so it can be predicted with exponential smoothing model. On the basis of 1995–2007 monitoring data of Copper (Cu) at the surface water monitoring point 500m to the downstream of the sewage outlet in a copper ore, with cubic exponential smoothing method, the predicting model of heavy metal Cu is established through selecting different smoothing coefficient a. After applying the predicting model to predicting the content of Cu in the wastewater 500m to the sewage outlet from 2005 to 2007, it is found that the error of comparing the predicted result with correspondent actual monitoring values is less than 5%, which satisfies the requirements after testing. The predicting result shows that the mining area will be still in the contamination of Cu in the future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于指数平滑模型的矿区重金属污染时间序列预测
矿区重金属污染具有时间序列特征,可以用指数平滑模型进行预测。根据某铜矿排污口下游500m地表水监测点1995-2007年的铜(Cu)监测数据,采用三次指数平滑法,通过选择不同的平滑系数a,建立了重金属Cu的预测模型。将该预测模型应用于2005 - 2007年对排污口下游500m废水中Cu含量的预测。结果表明,预测结果与相应的实际监测值比较误差小于5%,满足了试验要求。预测结果表明,矿区今后仍将处于铜污染状态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applications of oriental systems methodology to system shortest path programming visualization research process ZigBee based wireless sensor networks for service robot intelligent space An adaptive control of Web QoS based on online identification Extended (G′ over G)-expansion method for Relativistic Toda Lattice system The study of Localization algorithm based on RSSI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1