M. Arias, N. Curbelo, Pablo González Rabelino, E. Vicente, G. Giménez, G. Galván
{"title":"Inheritance of resistance against Peronospora destructor in onion cv. ‘Regia’","authors":"M. Arias, N. Curbelo, Pablo González Rabelino, E. Vicente, G. Giménez, G. Galván","doi":"10.21475/AJCS.20.14.12.2883","DOIUrl":null,"url":null,"abstract":"Onion downy mildew (DM) caused by Peronospora destructor is a very destructive leaf disease. Genetic resistance is an economic and environmentally friendly way of disease control. In this research, the segregation of DM resistance was analysed in six offspring from crosses between national cultivars and the cv. ‘Regia’, a partial resistance source. F1 plants were self-fertilised, and F1S1 derived progenies were evaluated. The segregations in DM severity were skewed towards susceptibility, with transgressive segregation in five of six progenies. The recessive inheritance could be associated with loss of susceptibility mechanisms. In another experiment, the response of advanced F1S2 lines ‘Regia’ x ‘Pantanoso del Sauce’ were evaluated two times (August and November 2017) in DM disease severity, DM histological quantitative differences, and agronomic traits. F1S2 lines, which have had an earlier selection process, presented an intermediate DM severity between the parents. Disease severity was positively correlated with histological differences in the proportion of infected stomata. ‘Regia’ presented the lowest DM severity and the highest percentage of healthy stomata. Most resistant F1S2 lines did not differ from control cultivars in bulb yield, bulb quality traits and postharvest behaviour, and could be the basis to develop a DM resistant cultivar in comparison to currently grown cultivars","PeriodicalId":20643,"journal":{"name":"Proposed for presentation at the 2020 Virtual MRS Fall Meeting & Exhibit held November 27 - December 4, 2020.","volume":"2 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proposed for presentation at the 2020 Virtual MRS Fall Meeting & Exhibit held November 27 - December 4, 2020.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21475/AJCS.20.14.12.2883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Onion downy mildew (DM) caused by Peronospora destructor is a very destructive leaf disease. Genetic resistance is an economic and environmentally friendly way of disease control. In this research, the segregation of DM resistance was analysed in six offspring from crosses between national cultivars and the cv. ‘Regia’, a partial resistance source. F1 plants were self-fertilised, and F1S1 derived progenies were evaluated. The segregations in DM severity were skewed towards susceptibility, with transgressive segregation in five of six progenies. The recessive inheritance could be associated with loss of susceptibility mechanisms. In another experiment, the response of advanced F1S2 lines ‘Regia’ x ‘Pantanoso del Sauce’ were evaluated two times (August and November 2017) in DM disease severity, DM histological quantitative differences, and agronomic traits. F1S2 lines, which have had an earlier selection process, presented an intermediate DM severity between the parents. Disease severity was positively correlated with histological differences in the proportion of infected stomata. ‘Regia’ presented the lowest DM severity and the highest percentage of healthy stomata. Most resistant F1S2 lines did not differ from control cultivars in bulb yield, bulb quality traits and postharvest behaviour, and could be the basis to develop a DM resistant cultivar in comparison to currently grown cultivars