Stochastic Last-Mile Delivery with Crowd-Shipping and Mobile Depots

Kianoush Mousavi, Merve Bodur, M. Roorda
{"title":"Stochastic Last-Mile Delivery with Crowd-Shipping and Mobile Depots","authors":"Kianoush Mousavi, Merve Bodur, M. Roorda","doi":"10.1287/trsc.2021.1088","DOIUrl":null,"url":null,"abstract":"This paper proposes a two-tier last-mile delivery model that optimally selects mobile depot locations in advance of full information about the availability of crowd-shippers and then transfers packages to crowd-shippers for the final shipment to the customers. Uncertainty in crowd-shipper availability is incorporated by modeling the problem as a two-stage stochastic integer program. Enhanced decomposition solution algorithms including branch-and-cut and cut-and-project frameworks are developed. A risk-averse approach is compared against a risk-neutral approach by assessing conditional-value-at-risk. A detailed computational study based on the City of Toronto is conducted. The deterministic version of the model outperforms a capacitated vehicle routing problem on average by 20%. For the stochastic model, decomposition algorithms usually discover near-optimal solutions within two hours for instances up to a size of 30 mobile depot locations, 40 customers, and 120 crowd-shippers. The cut-and-project approach outperforms the branch-and-cut approach by up to 85% in the risk-averse setting in certain instances. The stochastic model provides solutions that are 3.35%–6.08% better than the deterministic model, and the improvements are magnified with increased uncertainty in crowd-shipper availability. A risk-averse approach leads the operator to send more mobile depots or postpone customer deliveries to reduce the risk of high penalties for nondelivery.","PeriodicalId":23247,"journal":{"name":"Transp. Sci.","volume":"20 1","pages":"612-630"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transp. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1287/trsc.2021.1088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

This paper proposes a two-tier last-mile delivery model that optimally selects mobile depot locations in advance of full information about the availability of crowd-shippers and then transfers packages to crowd-shippers for the final shipment to the customers. Uncertainty in crowd-shipper availability is incorporated by modeling the problem as a two-stage stochastic integer program. Enhanced decomposition solution algorithms including branch-and-cut and cut-and-project frameworks are developed. A risk-averse approach is compared against a risk-neutral approach by assessing conditional-value-at-risk. A detailed computational study based on the City of Toronto is conducted. The deterministic version of the model outperforms a capacitated vehicle routing problem on average by 20%. For the stochastic model, decomposition algorithms usually discover near-optimal solutions within two hours for instances up to a size of 30 mobile depot locations, 40 customers, and 120 crowd-shippers. The cut-and-project approach outperforms the branch-and-cut approach by up to 85% in the risk-averse setting in certain instances. The stochastic model provides solutions that are 3.35%–6.08% better than the deterministic model, and the improvements are magnified with increased uncertainty in crowd-shipper availability. A risk-averse approach leads the operator to send more mobile depots or postpone customer deliveries to reduce the risk of high penalties for nondelivery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
随机最后一英里运输与人群运输和移动仓库
本文提出了一种两层最后一英里配送模型,该模型在充分了解人群托运人的可用性之前,最优地选择移动仓库位置,然后将包裹转移给人群托运人,以便最终运送到客户手中。通过将问题建模为两阶段随机整数规划,纳入了人群托运人可用性的不确定性。开发了改进的分解解算法,包括分支-切割和切割-项目框架。通过评估有条件的风险价值,将风险厌恶方法与风险中性方法进行比较。以多伦多市为例进行了详细的计算研究。该模型的确定性版本比有能力车辆路径问题的平均性能高出20%。对于随机模型,分解算法通常在两个小时内发现接近最优的解决方案,例如30个移动仓库位置,40个客户和120个人群运输船。在某些情况下,在规避风险的情况下,切割-项目方法比分支-切割方法的性能高出85%。随机模型提供的解比确定性模型的解好3.35% ~ 6.08%,并且随着人群运输可获得性不确定性的增加,改进效果被放大。规避风险的方法导致运营商派遣更多的移动仓库或推迟客户交付,以降低因未交付而遭受高额罚款的风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effects of Air Quality on Housing Location: A Predictive Dynamic Continuum User-Optimal Approach Transportation in the Sharing Economy Scheduling Vehicles with Spatial Conflicts Differentiated Pricing of Shared Mobility Systems Considering Network Effects Using COVID-19 Data on Vaccine Shipments and Wastage to Inform Modeling and Decision-Making
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1