Optimal Footprint Symbiosis in Shared Cache

Xiaolin Wang, Yechen Li, Yingwei Luo, Xiameng Hu, Jacob Brock, C. Ding, Zhenlin Wang
{"title":"Optimal Footprint Symbiosis in Shared Cache","authors":"Xiaolin Wang, Yechen Li, Yingwei Luo, Xiameng Hu, Jacob Brock, C. Ding, Zhenlin Wang","doi":"10.1109/CCGrid.2015.153","DOIUrl":null,"url":null,"abstract":"On multicore processors, applications are run sharing the cache. This paper presents online optimization to collocate applications to minimize cache interference to maximize performance. The paper formulates the optimization problem and solution, presents a new sampling technique for locality analysis and evaluates it in an exhaustive test of 12,870 cases. For locality analysis, previous sampling was two orders of magnitude faster than full-trace analysis. The new sampling reduces the cost by another two orders of magnitude. The best prior work improves co-run performance by 56% on average. The new optimization improves it by another 29%. When sampling and optimization are combined, the paper shows that it takes less than 0.1 second analysis per program to obtain a co-run that is within 1.5% of the best possible performance.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"52 1","pages":"412-422"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

On multicore processors, applications are run sharing the cache. This paper presents online optimization to collocate applications to minimize cache interference to maximize performance. The paper formulates the optimization problem and solution, presents a new sampling technique for locality analysis and evaluates it in an exhaustive test of 12,870 cases. For locality analysis, previous sampling was two orders of magnitude faster than full-trace analysis. The new sampling reduces the cost by another two orders of magnitude. The best prior work improves co-run performance by 56% on average. The new optimization improves it by another 29%. When sampling and optimization are combined, the paper shows that it takes less than 0.1 second analysis per program to obtain a co-run that is within 1.5% of the best possible performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
共享缓存中的最优内存占用共生
在多核处理器上,应用程序运行时共享缓存。本文提出了在线优化配置应用程序,以减少缓存干扰,最大限度地提高性能。本文提出了优化问题及其求解方法,提出了一种新的局部分析抽样技术,并通过对12870例的穷举测试对其进行了评价。对于局部性分析,以前的采样比全迹分析快两个数量级。新的采样方法将成本又降低了两个数量级。最好的先前工作平均提高了56%的协同运行性能。新的优化又提高了29%。当采样和优化相结合时,论文表明,每个程序只需不到0.1秒的分析就可以获得在最佳性能的1.5%以内的共同运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self Protecting Data Sharing Using Generic Policies Partition-Aware Routing to Improve Network Isolation in Infiniband Based Multi-tenant Clusters MIC-Tandem: Parallel X!Tandem Using MIC on Tandem Mass Spectrometry Based Proteomics Data Study of the KVM CPU Performance of Open-Source Cloud Management Platforms Visualizing City Events on Search Engine: Tword the Search Infrustration for Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1