Automated left ventricle segmentation in 2-D LGE-MRI

T. Kurzendorfer, A. Brost, C. Forman, A. Maier
{"title":"Automated left ventricle segmentation in 2-D LGE-MRI","authors":"T. Kurzendorfer, A. Brost, C. Forman, A. Maier","doi":"10.1109/ISBI.2017.7950646","DOIUrl":null,"url":null,"abstract":"For electrophysiology procedures, obtaining the information of scar within the left ventricle is very important for diagnosis, therapy planning and patient prognosis. The clinical gold standard to visualize scar is late-gadolinium-enhanced-MRI (LGE-MRI). The viability assessment of the myocardium often requires the prior segmentation of the left ventricle (LV). To overcome this problem, we propose an approach for fully automatic LV segmentation in 2-D LGE-MRI. First, the LV is automatically detected using circular Hough transforms. Second, the blood pool is approximated by applying a morphological active contours approach. The refinement of the endo- and epicardial contours is performed in polar space, considering the edge information and scar distribution. The proposed method was evaluated on 26 clinical LGE-MRI data sets. This comparison resulted in a Dice coefficient of 0.85 ± 0.06 for the endocardium and 0.84 ± 0.06 for the epicardium.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"776 1","pages":"831-834"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950646","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

For electrophysiology procedures, obtaining the information of scar within the left ventricle is very important for diagnosis, therapy planning and patient prognosis. The clinical gold standard to visualize scar is late-gadolinium-enhanced-MRI (LGE-MRI). The viability assessment of the myocardium often requires the prior segmentation of the left ventricle (LV). To overcome this problem, we propose an approach for fully automatic LV segmentation in 2-D LGE-MRI. First, the LV is automatically detected using circular Hough transforms. Second, the blood pool is approximated by applying a morphological active contours approach. The refinement of the endo- and epicardial contours is performed in polar space, considering the edge information and scar distribution. The proposed method was evaluated on 26 clinical LGE-MRI data sets. This comparison resulted in a Dice coefficient of 0.85 ± 0.06 for the endocardium and 0.84 ± 0.06 for the epicardium.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二维LGE-MRI自动左心室分割
在电生理手术中,获取左心室内疤痕的信息对诊断、治疗计划和患者预后具有重要意义。观察瘢痕的临床金标准是晚期钆增强mri (LGE-MRI)。心肌活力评估通常需要预先分割左心室(LV)。为了克服这个问题,我们提出了一种二维大磁共振成像的全自动左室分割方法。首先,使用圆形霍夫变换自动检测LV。其次,血池是近似应用形态学活动轮廓的方法。心内和心外膜轮廓的细化是在极空间进行的,考虑到边缘信息和疤痕分布。在26组临床LGE-MRI数据集上对该方法进行了评估。这种比较导致心内膜的Dice系数为0.85±0.06,心外膜的Dice系数为0.84±0.06。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1