Cloud-Based Machine Learning Tools for Enhanced Big Data Applications

A. Cuzzocrea, E. Mumolo, P. Corona
{"title":"Cloud-Based Machine Learning Tools for Enhanced Big Data Applications","authors":"A. Cuzzocrea, E. Mumolo, P. Corona","doi":"10.1109/CCGrid.2015.170","DOIUrl":null,"url":null,"abstract":"We propose Cloud-based machine learning tools for enhanced Big Data applications, where the main idea is that of predicting the \"next\" workload occurring against the target Cloud infrastructure via an innovative ensemble-based approach that combine the effectiveness of different well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant at now in the specific context of Big Data. So-called workload categorization problem plays a critical role towards improving the efficiency and the reliability of Cloud-based big data applications. Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed classification approach on top of virtual machines, which represent classical \"commodity\" settings for Cloud-based big data applications. Preliminary experimental assessment and analysis clearly confirm the benefits deriving from our classification framework.","PeriodicalId":6664,"journal":{"name":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","volume":"60 1","pages":"908-914"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 15th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCGrid.2015.170","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We propose Cloud-based machine learning tools for enhanced Big Data applications, where the main idea is that of predicting the "next" workload occurring against the target Cloud infrastructure via an innovative ensemble-based approach that combine the effectiveness of different well-known classifiers in order to enhance the whole accuracy of the final classification, which is very relevant at now in the specific context of Big Data. So-called workload categorization problem plays a critical role towards improving the efficiency and the reliability of Cloud-based big data applications. Implementation-wise, our method proposes deploying Cloud entities that participate to the distributed classification approach on top of virtual machines, which represent classical "commodity" settings for Cloud-based big data applications. Preliminary experimental assessment and analysis clearly confirm the benefits deriving from our classification framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增强大数据应用的基于云的机器学习工具
我们提出了用于增强大数据应用的基于云的机器学习工具,其主要思想是通过一种创新的基于集成的方法来预测针对目标云基础设施发生的“下一个”工作负载,该方法结合了不同知名分类器的有效性,以提高最终分类的整体准确性,这在目前的大数据特定背景下非常相关。所谓的工作负载分类问题对于提高基于云的大数据应用的效率和可靠性起着至关重要的作用。在实现方面,我们的方法建议在虚拟机上部署参与分布式分类方法的云实体,这代表了基于云的大数据应用程序的经典“商品”设置。初步的实验评估和分析清楚地证实了我们的分类框架所带来的好处。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Self Protecting Data Sharing Using Generic Policies Partition-Aware Routing to Improve Network Isolation in Infiniband Based Multi-tenant Clusters MIC-Tandem: Parallel X!Tandem Using MIC on Tandem Mass Spectrometry Based Proteomics Data Study of the KVM CPU Performance of Open-Source Cloud Management Platforms Visualizing City Events on Search Engine: Tword the Search Infrustration for Smart City
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1