{"title":"A community question-answering refinement system","authors":"M. S. Pera, Yiu-Kai Ng","doi":"10.1145/1995966.1995999","DOIUrl":null,"url":null,"abstract":"Community Question Answering (CQA) websites, which archive millions of questions and answers created by CQA users to provide a rich resource of information that is missing at web search engines and QA websites, have become increasingly popular. Web users who search for answers to their questions at CQA websites, however, are often required to either (i) wait for days until other CQA users post answers to their questions which might even be incorrect, offensive, or spam, or (ii) deal with restricted answer sets created by CQA websites due to the exact-match constraint that is employed and imposed between archived questions and user-formulated questions. To automate and enhance the process of locating high-quality answers to a user's question Q at a CQA website, we introduce a CQA refinement system, called QAR. Given Q, QAR first retrieves a set of CQA questions QS that are the same as, or similar to, Q in terms of its specified information need. Thereafter, QAR selects as answers to Q the top-ranked answers (among the ones to the questions in QS) based on various similarity scores and the length of the answers. Empirical studies, which were conducted using questions provided by the Text Retrieval Conference (TREC) and Text Analysis Conference (TAC), in addition to more than four millions questions (and their corresponding answers) extracted from Yahoo! Answers, show that QAR is effective in locating archived answers, if they exist, that satisfy the information need specified in Q. We have further assessed the performance of QAR by comparing its question-matching and answer-ranking strategies with their Yahoo! Answers' counterparts and verified that QAR outperforms Yahoo! Answers in (i) locating the set of questions QS that have the highest degrees of similarity with Q and (ii) ranking archived answers to QS as answers to Q.","PeriodicalId":91270,"journal":{"name":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","volume":"8 1","pages":"251-260"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"HT ... : the proceedings of the ... ACM Conference on Hypertext and Social Media. ACM Conference on Hypertext and Social Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1995966.1995999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Community Question Answering (CQA) websites, which archive millions of questions and answers created by CQA users to provide a rich resource of information that is missing at web search engines and QA websites, have become increasingly popular. Web users who search for answers to their questions at CQA websites, however, are often required to either (i) wait for days until other CQA users post answers to their questions which might even be incorrect, offensive, or spam, or (ii) deal with restricted answer sets created by CQA websites due to the exact-match constraint that is employed and imposed between archived questions and user-formulated questions. To automate and enhance the process of locating high-quality answers to a user's question Q at a CQA website, we introduce a CQA refinement system, called QAR. Given Q, QAR first retrieves a set of CQA questions QS that are the same as, or similar to, Q in terms of its specified information need. Thereafter, QAR selects as answers to Q the top-ranked answers (among the ones to the questions in QS) based on various similarity scores and the length of the answers. Empirical studies, which were conducted using questions provided by the Text Retrieval Conference (TREC) and Text Analysis Conference (TAC), in addition to more than four millions questions (and their corresponding answers) extracted from Yahoo! Answers, show that QAR is effective in locating archived answers, if they exist, that satisfy the information need specified in Q. We have further assessed the performance of QAR by comparing its question-matching and answer-ranking strategies with their Yahoo! Answers' counterparts and verified that QAR outperforms Yahoo! Answers in (i) locating the set of questions QS that have the highest degrees of similarity with Q and (ii) ranking archived answers to QS as answers to Q.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
社区问答精细化系统
社区问答(CQA)网站存档了数以百万计的由CQA用户创建的问题和答案,提供了网络搜索引擎和QA网站所缺少的丰富的信息资源,已经变得越来越流行。然而,在CQA网站上搜索问题答案的网络用户通常需要(i)等待数天,直到其他CQA用户发布他们的问题的答案,这些答案甚至可能是不正确的、冒犯性的或垃圾邮件的,或者(ii)处理由CQA网站创建的受限答案集,这是由于在存档问题和用户制定的问题之间采用和强加的精确匹配约束。为了自动化和增强在CQA网站上查找用户问题Q的高质量答案的过程,我们引入了一个CQA优化系统,称为QAR。给定Q, QAR首先检索一组CQA问题QS,这些问题在其指定的信息需求方面与Q相同或相似。然后,QAR根据各种相似度得分和答案长度,选择排名靠前的答案(在QS中问题的答案中)作为Q的答案。实证研究使用了文本检索会议(TREC)和文本分析会议(TAC)提供的问题,以及从Yahoo!答案,表明QAR在查找存档答案方面是有效的,如果它们存在,满足q中指定的信息需求。我们通过比较QAR的问题匹配和答案排序策略与Yahoo!回答同行并验证QAR优于Yahoo!(i)定位与Q相似度最高的一组问题,(ii)将已存档的QS答案按Q的答案排序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HT '22: 33rd ACM Conference on Hypertext and Social Media, Barcelona, Spain, 28 June 2022- 1 July 2022 HT '21: 32nd ACM Conference on Hypertext and Social Media, Virtual Event, Ireland, 30 August 2021 - 2 September 2021 HT '20: 31st ACM Conference on Hypertext and Social Media, Virtual Event, USA, July 13-15, 2020 Detecting Changes in Suicide Content Manifested in Social Media Following Celebrity Suicides. QualityRank: assessing quality of wikipedia articles by mutually evaluating editors and texts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1