Exploring alternatives of Complex Event Processing execution engines in demanding cases

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-03-27 DOI:10.1145/3555776.3577734
Styliani Kyrama, A. Gounaris
{"title":"Exploring alternatives of Complex Event Processing execution engines in demanding cases","authors":"Styliani Kyrama, A. Gounaris","doi":"10.1145/3555776.3577734","DOIUrl":null,"url":null,"abstract":"Complex Event Processing (CEP) is a mature technology providing particularly efficient solutions for pattern detection in streaming settings. Nevertheless, even the most advanced CEP engines struggle to deal with cases when the number of pattern matches grows exponentially, e.g., when the queries involve Kleene operators to detect trends. In this work, we present an overview of state-of-the-art CEP engines used for pattern detection, focusing also on systems that discover demanding event trends. The main contribution lies in the comparison of existing CEP engine alternatives and the proposal of a novel hash-endowed automata-based lazy hybrid execution engine, called SASEXT, that undertakes the processing of pattern queries involving Kleene patterns. Our proposal is orders of magnitude faster than existing solutions.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"4 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Complex Event Processing (CEP) is a mature technology providing particularly efficient solutions for pattern detection in streaming settings. Nevertheless, even the most advanced CEP engines struggle to deal with cases when the number of pattern matches grows exponentially, e.g., when the queries involve Kleene operators to detect trends. In this work, we present an overview of state-of-the-art CEP engines used for pattern detection, focusing also on systems that discover demanding event trends. The main contribution lies in the comparison of existing CEP engine alternatives and the proposal of a novel hash-endowed automata-based lazy hybrid execution engine, called SASEXT, that undertakes the processing of pattern queries involving Kleene patterns. Our proposal is orders of magnitude faster than existing solutions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
探索复杂事件处理执行引擎在苛刻情况下的替代方案
复杂事件处理(CEP)是一种成熟的技术,为流设置中的模式检测提供了特别有效的解决方案。然而,即使是最先进的CEP引擎也难以处理模式匹配数量呈指数增长的情况,例如,当查询涉及Kleene操作符来检测趋势时。在这项工作中,我们概述了用于模式检测的最先进的CEP引擎,还关注了发现苛刻事件趋势的系统。本文的主要贡献在于比较了现有的CEP引擎替代方案,并提出了一种新的基于哈希的自动机的惰性混合执行引擎(称为SASEXT),该引擎负责处理涉及Kleene模式的模式查询。我们的建议比现有的解决方案快几个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1