CEM: an Ontology for Crime Events in Newspaper Articles

IF 0.4 Q4 COMPUTER SCIENCE, INFORMATION SYSTEMS Applied Computing Review Pub Date : 2023-03-27 DOI:10.1145/3555776.3577862
Federica Rollo, Laura Po, Alessandro Castellucci
{"title":"CEM: an Ontology for Crime Events in Newspaper Articles","authors":"Federica Rollo, Laura Po, Alessandro Castellucci","doi":"10.1145/3555776.3577862","DOIUrl":null,"url":null,"abstract":"The adoption of semantic technologies for the representation of crime events can help law enforcement agencies (LEAs) in crime prevention and investigation. Moreover, online newspapers and social networks are valuable sources for crime intelligence gathering. In this paper, we propose a new lightweight ontology to model crime events as they are usually described in online news articles. The Crime Event Model (CEM) can integrate specific data about crimes, i.e., where and when they occurred, who is involved (author, victim, and other subjects involved), which is the reason for the occurrence, and details about the source of information (e.g., the news article). Extracting structured data from multiple online sources and interconnecting them in a Knowledge Graph using CEM allow events relationships extraction, patterns and trends identification, and event recommendation. The CEM ontology is available at https://w3id.org/CEMontology.","PeriodicalId":42971,"journal":{"name":"Applied Computing Review","volume":"10 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2023-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computing Review","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3555776.3577862","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1

Abstract

The adoption of semantic technologies for the representation of crime events can help law enforcement agencies (LEAs) in crime prevention and investigation. Moreover, online newspapers and social networks are valuable sources for crime intelligence gathering. In this paper, we propose a new lightweight ontology to model crime events as they are usually described in online news articles. The Crime Event Model (CEM) can integrate specific data about crimes, i.e., where and when they occurred, who is involved (author, victim, and other subjects involved), which is the reason for the occurrence, and details about the source of information (e.g., the news article). Extracting structured data from multiple online sources and interconnecting them in a Knowledge Graph using CEM allow events relationships extraction, patterns and trends identification, and event recommendation. The CEM ontology is available at https://w3id.org/CEMontology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
报纸文章中犯罪事件的本体
采用语义技术表示犯罪事件可以帮助执法机构预防和调查犯罪。此外,在线报纸和社交网络是收集犯罪情报的宝贵来源。在本文中,我们提出了一种新的轻量级本体来建模犯罪事件,因为它们通常在在线新闻文章中描述。犯罪事件模型(CEM)可以集成有关犯罪的具体数据,即,犯罪发生的地点和时间,涉及的对象(作者、受害者和涉及的其他主体),发生的原因,以及有关信息来源的详细信息(例如,新闻文章)。从多个在线资源中提取结构化数据,并使用CEM将它们连接到知识图中,从而可以提取事件关系、识别模式和趋势以及推荐事件。CEM本体可在https://w3id.org/CEMontology上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computing Review
Applied Computing Review COMPUTER SCIENCE, INFORMATION SYSTEMS-
自引率
40.00%
发文量
8
期刊最新文献
DIWS-LCR-Rot-hop++: A Domain-Independent Word Selector for Cross-Domain Aspect-Based Sentiment Classification Leveraging Semantic Technologies for Collaborative Inference of Threatening IoT Dependencies Relating Optimal Repairs in Ontology Engineering with Contraction Operations in Belief Change Block-RACS: Towards Reputation-Aware Client Selection and Monetization Mechanism for Federated Learning Elastic Data Binning: Time-Series Sketching for Time-Domain Astrophysics Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1