CyberHelp: Sentiment Analysis on Social Media Data Using Deep Belief Network to Predict Suicidal Ideation of Students

U. Sakthi, Thomas M. Chen, Mithileysh Sathiyanarayanan
{"title":"CyberHelp: Sentiment Analysis on Social Media Data Using Deep Belief Network to Predict Suicidal Ideation of Students","authors":"U. Sakthi, Thomas M. Chen, Mithileysh Sathiyanarayanan","doi":"10.1109/IDCIoT56793.2023.10053425","DOIUrl":null,"url":null,"abstract":"Suicide is a very critical and important issue in modern society. Suicide is the third-leading cause of death for college and high school students. Social media allows students in the digital environment to share their suicidal ideas and thoughts with others. Accurate and early detection and prevention of suicidal ideation in students can save the students' lives. To identify the risk factor for suicidal attempts, a suitable method of analysing the suicidal behaviour of students using their sentiment text posted on social media can be used. This paper presents an optimized Dragonfly algorithm (DFA) using a Deep Belief Network (DBN) for the automatic detection of suicidal ideation in students. In our CyberHelp Solution, the proposed DFA-based DBN model analyses student social media data, predicts suicidal behavior, and treats students appropriately. The sentiment analysis performs automated categorization of online messages and makes accurate predictions of the student’s suicidal behaviors. The dragonfly heuristic optimization algorithm is used for tuning the hyperparameter in the deep belief network. The proposed DFA-DBN technique has been implemented to predict suicidal ideation in students with a higher accuracy of 95.5% compared with other classification models.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"9 1","pages":"206-211"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053425","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Suicide is a very critical and important issue in modern society. Suicide is the third-leading cause of death for college and high school students. Social media allows students in the digital environment to share their suicidal ideas and thoughts with others. Accurate and early detection and prevention of suicidal ideation in students can save the students' lives. To identify the risk factor for suicidal attempts, a suitable method of analysing the suicidal behaviour of students using their sentiment text posted on social media can be used. This paper presents an optimized Dragonfly algorithm (DFA) using a Deep Belief Network (DBN) for the automatic detection of suicidal ideation in students. In our CyberHelp Solution, the proposed DFA-based DBN model analyses student social media data, predicts suicidal behavior, and treats students appropriately. The sentiment analysis performs automated categorization of online messages and makes accurate predictions of the student’s suicidal behaviors. The dragonfly heuristic optimization algorithm is used for tuning the hyperparameter in the deep belief network. The proposed DFA-DBN technique has been implemented to predict suicidal ideation in students with a higher accuracy of 95.5% compared with other classification models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
网络帮助:基于深度信念网络的社交媒体数据情绪分析预测学生自杀意念
自杀是现代社会一个非常关键和重要的问题。自杀是大学生和高中生的第三大死因。社交媒体允许学生在数字环境中与他人分享他们的自杀想法和想法。准确、早期地发现和预防学生的自杀意念,可以挽救学生的生命。为了确定自杀企图的风险因素,可以使用一种合适的方法来分析学生在社交媒体上发布的情绪文本的自杀行为。本文提出了一种基于深度信念网络(DBN)的蜻蜓算法(DFA),用于学生自杀意念的自动检测。在我们的CyberHelp解决方案中,提出的基于dfa的DBN模型分析学生的社交媒体数据,预测自杀行为,并适当对待学生。情绪分析对在线信息进行自动分类,并对学生的自杀行为做出准确预测。采用蜻蜓启发式优化算法对深度信念网络中的超参数进行调优。与其他分类模型相比,DFA-DBN技术对学生自杀意念的预测准确率高达95.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
5689
期刊最新文献
Circumvolution of Centre Pixel Algorithm in Pixel Value Differencing Steganography Model in the Spatial Domain Prevention of Aflatoxin in Peanut Using Naive Bayes Model Smart Energy Meter and Monitoring System using Internet of Things (IoT) Maximizing the Net Present Value of Resource-Constrained Project Scheduling Problems using Recurrent Neural Network with Genetic Algorithm Framework for Implementation of Personality Inventory Model on Natural Language Processing with Personality Traits Analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1