Study on brazing WC-6Co/In718 with in-situ synthesis of Ni/Cu/AgCuNiMn solder

IF 1.7 4区 材料科学 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Technology Pub Date : 2023-05-04 DOI:10.1080/02670836.2023.2205774
P. Liu, Sujuan Zhong, Y. Pei, Guanxing Zhang, Guidong Mo, G. Wang
{"title":"Study on brazing WC-6Co/In718 with in-situ synthesis of Ni/Cu/AgCuNiMn solder","authors":"P. Liu, Sujuan Zhong, Y. Pei, Guanxing Zhang, Guidong Mo, G. Wang","doi":"10.1080/02670836.2023.2205774","DOIUrl":null,"url":null,"abstract":"Based on AgCuNiMn alloy, Ni/Cu/AgCuNiMn high-Ni solder was designed by in-situ synthesis. The WC-6Co/In718 joint was prepared by vacuum brazing at 950 °C for 10 min. The effect of metal foil on the filler metal filling ability, microstructure and mechanical properties of the joint was studied. The microstructure evolution and strengthening mechanism of the joint brazed with Ni/Cu/AgCuNiMn solder were analysed. The results showed that Ni element mainly plays a solution-strengthening role on the joint, and improve the interface bonding strength and the strength of Ag (s, s) distributed in the centre of the brazed joint, which increased the average tensile strength by 32.4% (from 426.5 to 564.7 MPa).","PeriodicalId":18232,"journal":{"name":"Materials Science and Technology","volume":"9 1","pages":"2456 - 2463"},"PeriodicalIF":1.7000,"publicationDate":"2023-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/02670836.2023.2205774","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Based on AgCuNiMn alloy, Ni/Cu/AgCuNiMn high-Ni solder was designed by in-situ synthesis. The WC-6Co/In718 joint was prepared by vacuum brazing at 950 °C for 10 min. The effect of metal foil on the filler metal filling ability, microstructure and mechanical properties of the joint was studied. The microstructure evolution and strengthening mechanism of the joint brazed with Ni/Cu/AgCuNiMn solder were analysed. The results showed that Ni element mainly plays a solution-strengthening role on the joint, and improve the interface bonding strength and the strength of Ag (s, s) distributed in the centre of the brazed joint, which increased the average tensile strength by 32.4% (from 426.5 to 564.7 MPa).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
原位合成Ni/Cu/AgCuNiMn钎料钎焊WC-6Co/In718的研究
基于AgCuNiMn合金,采用原位合成方法设计了Ni/Cu/AgCuNiMn高镍钎料。采用950℃真空钎焊10 min制备WC-6Co/In718接头。研究了金属箔对钎料填充能力、接头组织和力学性能的影响。分析了Ni/Cu/AgCuNiMn钎料钎焊接头的显微组织演变及强化机理。结果表明:Ni元素在钎焊接头上主要起固溶强化作用,提高了界面结合强度和分布在钎焊接头中心的Ag (s, s)的强度,使钎焊接头的平均抗拉强度从426.5提高到564.7 MPa,提高了32.4%;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Technology
Materials Science and Technology 工程技术-材料科学:综合
CiteScore
2.70
自引率
5.60%
发文量
0
审稿时长
3 months
期刊介绍: 《Materials Science and Technology》(MST) is an international forum for the publication of refereed contributions covering fundamental and technological aspects of materials science and engineering.
期刊最新文献
Statement of Retraction: Creep and mechanical properties of aluminium A356 composites reinforced with coated and un-coated MWCNTs fabricated using the stir casting method Low-cycle fatigue mashing behaviours of HTRB630 high-strength steel exposed to high temperatures Polymer nanocomposite films of Sr-doped BiVO4 for photodegradation of malachite green Constructing superior rate-performance manganese-based anode for lithium-ion batteries by tuning interface effect Evolution mechanism of the low-carbon MgO-based alkali-activated system under different heat-treatment conditions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1