Spatial Data Quality in the Internet of Things: Management, Exploitation, and Prospects

Huan Li, Hua Lu, Christian S. Jensen, Bo Tang, M. A. Cheema
{"title":"Spatial Data Quality in the Internet of Things: Management, Exploitation, and Prospects","authors":"Huan Li, Hua Lu, Christian S. Jensen, Bo Tang, M. A. Cheema","doi":"10.1145/3498338","DOIUrl":null,"url":null,"abstract":"With the continued deployment of the Internet of Things (IoT), increasing volumes of devices are being deployed that emit massive spatially referenced data. Due in part to the dynamic, decentralized, and heterogeneous architecture of the IoT, the varying and often low quality of spatial IoT data (SID) presents challenges to applications built on top of this data. This survey aims to provide unique insight to practitioners who intend to develop IoT-enabled applications and to researchers who wish to conduct research that relates to data quality in the IoT setting. The survey offers an inventory analysis of major data quality dimensions in SID and covers significant data characteristics and associated quality considerations. The survey summarizes data quality related technologies from both task and technique perspectives. Organizing the technologies from the task perspective, it covers recent progress in SID quality management, encompassing location refinement, uncertainty elimination, outlier removal, fault correction, data integration, and data reduction; and it covers low-quality SID exploitation, encompassing querying, analysis, and decision-making techniques. Finally, the survey covers emerging trends and open issues concerning the quality of SID.","PeriodicalId":7000,"journal":{"name":"ACM Computing Surveys (CSUR)","volume":"33 1","pages":"1 - 41"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Computing Surveys (CSUR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3498338","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

With the continued deployment of the Internet of Things (IoT), increasing volumes of devices are being deployed that emit massive spatially referenced data. Due in part to the dynamic, decentralized, and heterogeneous architecture of the IoT, the varying and often low quality of spatial IoT data (SID) presents challenges to applications built on top of this data. This survey aims to provide unique insight to practitioners who intend to develop IoT-enabled applications and to researchers who wish to conduct research that relates to data quality in the IoT setting. The survey offers an inventory analysis of major data quality dimensions in SID and covers significant data characteristics and associated quality considerations. The survey summarizes data quality related technologies from both task and technique perspectives. Organizing the technologies from the task perspective, it covers recent progress in SID quality management, encompassing location refinement, uncertainty elimination, outlier removal, fault correction, data integration, and data reduction; and it covers low-quality SID exploitation, encompassing querying, analysis, and decision-making techniques. Finally, the survey covers emerging trends and open issues concerning the quality of SID.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
物联网空间数据质量:管理、开发与展望
随着物联网(IoT)的不断部署,越来越多的设备被部署,这些设备会发出大量的空间参考数据。部分由于物联网的动态、分散和异构架构,空间物联网数据(SID)的变化和通常低质量对基于这些数据构建的应用程序提出了挑战。本调查旨在为打算开发物联网应用程序的从业者和希望在物联网环境中进行与数据质量相关的研究的研究人员提供独特的见解。该调查提供了SID中主要数据质量维度的清单分析,涵盖了重要的数据特征和相关的质量考虑因素。该调查从任务和技术两个角度总结了数据质量相关技术。从任务的角度组织技术,涵盖SID质量管理的最新进展,包括位置细化、不确定性消除、异常值去除、故障纠正、数据集成和数据简化;它涵盖了低质量的SID开发,包括查询、分析和决策技术。最后,该调查涵盖了有关SID质量的新兴趋势和开放问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Comparisons of Clustering Approaches for Data Representation On the Structure of the Boolean Satisfiability Problem: A Survey A Brief Overview of Universal Sentence Representation Methods: A Linguistic View The Eye in Extended Reality: A Survey on Gaze Interaction and Eye Tracking in Head-worn Extended Reality A Comprehensive Report on Machine Learning-based Early Detection of Alzheimer's Disease using Multi-modal Neuroimaging Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1