Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis

E. Polat
{"title":"Determination of the Effective Economic and/or Demographic Indicators in Classification of European Union Member and Candidate Countries Using Partial Least Squares Discriminant Analysis","authors":"E. Polat","doi":"10.6339/JDS.201801_16(1).0005","DOIUrl":null,"url":null,"abstract":"Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists of a classical Partial Least Squares Regression in which the dependent variable is a categorical one expressing the class membership of each observation. The aim of this study is both analyzing the performance of PLSDA method in classifying 28 European Union (EU) member countries and 7 candidate countries (Albania, Montenegro, Serbia, Macedonia FYR, Turkey moreover including potential candidates Bosnia and Herzegovina and Kosova) correctly to their pre-defined classes (candidate or member) and determining the economic and/or demographic indicators, which are effective in classifying, by using the data set obtained from database of the World Bank.","PeriodicalId":23898,"journal":{"name":"World Academy of Science, Engineering and Technology, International Journal of Environmental and Ecological Engineering","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Academy of Science, Engineering and Technology, International Journal of Environmental and Ecological Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.6339/JDS.201801_16(1).0005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Partial Least Squares Discriminant Analysis (PLSDA) is a statistical method for classification and consists of a classical Partial Least Squares Regression in which the dependent variable is a categorical one expressing the class membership of each observation. The aim of this study is both analyzing the performance of PLSDA method in classifying 28 European Union (EU) member countries and 7 candidate countries (Albania, Montenegro, Serbia, Macedonia FYR, Turkey moreover including potential candidates Bosnia and Herzegovina and Kosova) correctly to their pre-defined classes (candidate or member) and determining the economic and/or demographic indicators, which are effective in classifying, by using the data set obtained from database of the World Bank.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用偏最小二乘判别分析确定欧盟成员国和候选国分类中的有效经济和/或人口指标
偏最小二乘判别分析(PLSDA)是一种分类的统计方法,由经典的偏最小二乘回归组成,其中因变量是表示每个观测值的类隶属度的分类变量。本研究的目的是分析PLSDA方法在将28个欧盟成员国和7个候选国(阿尔巴尼亚、黑山、塞尔维亚、马其顿前南斯拉夫共和国、土耳其以及包括潜在候选国波斯尼亚和黑塞哥维那和科索沃)正确分类到其预先定义的类别(候选国或成员国)中的表现,并通过使用从世界银行数据库获得的数据集确定有效分类的经济和/或人口指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural Evaluation of Cell-Filled Pavement Wastes of Oil Drilling: Treatment Techniques and Their Effectiveness Natural Ventilation around and through Building: A Numerical Study Experimental Study on Floating Breakwater Anchored by Piles Contextualization and Localization: Acceptability of the Developed Activity Sheets in Science 5 Integrating Climate Change Adaptation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1