Meng Huang, Shuai Liu, Yahao Zhang, Kewei Cui, Yana Wen
{"title":"Research on the university intelligent learning analysis system based on AI","authors":"Meng Huang, Shuai Liu, Yahao Zhang, Kewei Cui, Yana Wen","doi":"10.3233/JIFS-189820","DOIUrl":null,"url":null,"abstract":"The integration of Artificial Intelligence technology and school education had become a future trend, and became an important driving force for the development of education. With the advent of the era of big data, although the relationship between students’ learning status data was closer to nonlinear relationship, combined with the application analysis of artificial intelligence technology, it could be found that students’ living habits were closely related to their academic performance. In this paper, through the investigation and analysis of the living habits and learning conditions of more than 2000 students in the past 10 grades in Information College of Institute of Disaster Prevention, we used the hierarchical clustering algorithm to classify the nearly 180000 records collected, and used the big data visualization technology of Echarts + iView + GIS and the JavaScript development method to dynamically display the students’ life track and learning information based on the map, then apply Three Dimensional ArcGIS for JS API technology showed the network infrastructure of the campus. Finally, a training model was established based on the historical learning achievements, life trajectory, graduates’ salary, school infrastructure and other information combined with the artificial intelligence Back Propagation neural network algorithm. Through the analysis of the training resulted, it was found that the students’ academic performance was related to the reasonable laboratory study time, dormitory stay time, physical exercise time and social entertainment time. Finally, the system could intelligently predict students’ academic performance and give reasonable suggestions according to the established prediction model. The realization of this project could provide technical support for university educators.","PeriodicalId":44705,"journal":{"name":"International Journal of Fuzzy Logic and Intelligent Systems","volume":"14 1","pages":"1-10"},"PeriodicalIF":1.5000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Logic and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/JIFS-189820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3
Abstract
The integration of Artificial Intelligence technology and school education had become a future trend, and became an important driving force for the development of education. With the advent of the era of big data, although the relationship between students’ learning status data was closer to nonlinear relationship, combined with the application analysis of artificial intelligence technology, it could be found that students’ living habits were closely related to their academic performance. In this paper, through the investigation and analysis of the living habits and learning conditions of more than 2000 students in the past 10 grades in Information College of Institute of Disaster Prevention, we used the hierarchical clustering algorithm to classify the nearly 180000 records collected, and used the big data visualization technology of Echarts + iView + GIS and the JavaScript development method to dynamically display the students’ life track and learning information based on the map, then apply Three Dimensional ArcGIS for JS API technology showed the network infrastructure of the campus. Finally, a training model was established based on the historical learning achievements, life trajectory, graduates’ salary, school infrastructure and other information combined with the artificial intelligence Back Propagation neural network algorithm. Through the analysis of the training resulted, it was found that the students’ academic performance was related to the reasonable laboratory study time, dormitory stay time, physical exercise time and social entertainment time. Finally, the system could intelligently predict students’ academic performance and give reasonable suggestions according to the established prediction model. The realization of this project could provide technical support for university educators.
期刊介绍:
The International Journal of Fuzzy Logic and Intelligent Systems (pISSN 1598-2645, eISSN 2093-744X) is published quarterly by the Korean Institute of Intelligent Systems. The official title of the journal is International Journal of Fuzzy Logic and Intelligent Systems and the abbreviated title is Int. J. Fuzzy Log. Intell. Syst. Some, or all, of the articles in the journal are indexed in SCOPUS, Korea Citation Index (KCI), DOI/CrossrRef, DBLP, and Google Scholar. The journal was launched in 2001 and dedicated to the dissemination of well-defined theoretical and empirical studies results that have a potential impact on the realization of intelligent systems based on fuzzy logic and intelligent systems theory. Specific topics include, but are not limited to: a) computational intelligence techniques including fuzzy logic systems, neural networks and evolutionary computation; b) intelligent control, instrumentation and robotics; c) adaptive signal and multimedia processing; d) intelligent information processing including pattern recognition and information processing; e) machine learning and smart systems including data mining and intelligent service practices; f) fuzzy theory and its applications.