COMPARISON OF FUZZY SUBTRACTIVE CLUSTERING AND FUZZYC-MEANS

A. E. Haryati, S. Sugiyarto, Rizki Desia Arindra Putri
{"title":"COMPARISON OF FUZZY SUBTRACTIVE CLUSTERING AND FUZZYC-MEANS","authors":"A. E. Haryati, S. Sugiyarto, Rizki Desia Arindra Putri","doi":"10.21107/KURSOR.V11I1.254","DOIUrl":null,"url":null,"abstract":"Multivariate statistics have related problems with large data dimensions. One method that can be used is principal component analysis (PCA). Principal component analysis (PCA) is a technique used to reduce data dimensions consisting of several dependent variables while maintaining variance in the data. PCA can be used to stabilize measurements in statistical analysis, one of which is cluster analysis. Fuzzy clustering is a method of grouping based on membership values ​​that includes fuzzy sets as a weighting basis for grouping. In this study, the fuzzy clustering method used is Fuzzy Subtractive Clustering (FSC) and Fuzzy C-Means (FCM) with a combination of the Minkowski Chebysev distance. The purpose of this study was to compare the cluster results obtained from the FSC and FCM using the DBI validity index. The results obtained indicate that the results of clustering using FCM are better than the FSC.","PeriodicalId":52605,"journal":{"name":"Jurnal Ilmiah Kursor Menuju Solusi Teknologi Informasi","volume":"15 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Ilmiah Kursor Menuju Solusi Teknologi Informasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21107/KURSOR.V11I1.254","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Multivariate statistics have related problems with large data dimensions. One method that can be used is principal component analysis (PCA). Principal component analysis (PCA) is a technique used to reduce data dimensions consisting of several dependent variables while maintaining variance in the data. PCA can be used to stabilize measurements in statistical analysis, one of which is cluster analysis. Fuzzy clustering is a method of grouping based on membership values ​​that includes fuzzy sets as a weighting basis for grouping. In this study, the fuzzy clustering method used is Fuzzy Subtractive Clustering (FSC) and Fuzzy C-Means (FCM) with a combination of the Minkowski Chebysev distance. The purpose of this study was to compare the cluster results obtained from the FSC and FCM using the DBI validity index. The results obtained indicate that the results of clustering using FCM are better than the FSC.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊减法聚类与模糊均值的比较
多元统计在处理大数据维度时存在相关问题。一种可用的方法是主成分分析(PCA)。主成分分析(PCA)是一种用于减少由多个因变量组成的数据维数的技术,同时保持数据中的方差。主成分分析可以用来稳定统计分析中的测量值,其中一种是聚类分析。模糊聚类是一种基于隶属度值的分组方法,它将模糊集作为分组的权重基础。本研究使用的模糊聚类方法是模糊减法聚类(FSC)和模糊c均值(FCM),结合Minkowski Chebysev距离。本研究的目的是使用DBI效度指数比较FSC和FCM获得的聚类结果。结果表明,FCM聚类效果优于FSC聚类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊最新文献
SANKSI HUKUM TERHADAP PELAKU KEJAHATAN KEMANUSIAAN DI INDONESIA ASAS PRADUGA TAK BERSALAH DALAM PROSES PENYIDIKAN ISBAT NIKAH SUDUT PANDANG UNDANG-UNDANG PERKAWINAN PENDEKATAN HAK ASASI MANUSIA DEBITOR DAN KREDITOR DALAM PENGUJIAN UNDANG-UNDANG KEPALITIAN DAN PENUNDAAN KEWAJIBAN MEMBAYAR UTANG DIMASA MENDATANG REALISASI DEMOKRASI DAN KONSTITUSI DALAM UPAYA PENGUATAN MAHKAMAH KONSTITUSI DI INDONESIA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1