Drag Coefficient for Porous Screen in a Non-Oscillating Perpendicular to Plane-in Flow

M. S. Bhandiwad, T. Nasar
{"title":"Drag Coefficient for Porous Screen in a Non-Oscillating Perpendicular to Plane-in Flow","authors":"M. S. Bhandiwad, T. Nasar","doi":"10.1115/omae2021-62799","DOIUrl":null,"url":null,"abstract":"\n The flow-through porous bodies/structure is one of the more advanced research in the area of energy dissipation in coastal and civil engineering fields. The experiments on the determination of drag coefficient of screens with varying porosities and for the range of flow velocities lead to explore damping ratio in a typical fluid-structure interaction problem. An experimental study has been carried out to assess the drag coefficient of the porous screens as suggested by Keulegan, G. H (1968) [3]. Six different screens with porosities of 4.4%, 6.8%, 9.2% 15%, 20% and 25% are considered. In the experiments, water with a known head from one tank is allowed to flow through a pipe equipped with porous screens into the other tank. Based on the experimental observation, the correlation between Reynolds number and drag coefficient is obtained for all porous screens. The effect of damping nature (damping ratio) of the screen for a particular range of Reynolds number has been explored. As the Reynolds number increases, the drag coefficient decreases with increasing the porosity of the screen. Further, it is understood that the value of the damping ratio decreases with an increasing relative head (H/L).","PeriodicalId":23784,"journal":{"name":"Volume 6: Ocean Engineering","volume":"32 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 6: Ocean Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/omae2021-62799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The flow-through porous bodies/structure is one of the more advanced research in the area of energy dissipation in coastal and civil engineering fields. The experiments on the determination of drag coefficient of screens with varying porosities and for the range of flow velocities lead to explore damping ratio in a typical fluid-structure interaction problem. An experimental study has been carried out to assess the drag coefficient of the porous screens as suggested by Keulegan, G. H (1968) [3]. Six different screens with porosities of 4.4%, 6.8%, 9.2% 15%, 20% and 25% are considered. In the experiments, water with a known head from one tank is allowed to flow through a pipe equipped with porous screens into the other tank. Based on the experimental observation, the correlation between Reynolds number and drag coefficient is obtained for all porous screens. The effect of damping nature (damping ratio) of the screen for a particular range of Reynolds number has been explored. As the Reynolds number increases, the drag coefficient decreases with increasing the porosity of the screen. Further, it is understood that the value of the damping ratio decreases with an increasing relative head (H/L).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
垂直于平面流非振荡时多孔筛管的阻力系数
渗流多孔体/结构是海岸工程和土木工程耗能研究的前沿课题之一。通过确定不同孔隙率筛网的阻力系数和流速范围的实验,探讨了典型流固耦合问题中的阻尼比。Keulegan, G. H(1968)[3]提出了多孔筛网阻力系数的实验研究。考虑了6种孔隙率分别为4.4%、6.8%、9.2%、15%、20%和25%的不同屏幕。在实验中,已知水头的水从一个水箱流出,通过装有多孔筛网的管道流入另一个水箱。在实验观察的基础上,得到了所有多孔筛网的雷诺数与阻力系数的相关关系。探讨了筛网阻尼特性(阻尼比)对特定雷诺数范围的影响。随着雷诺数的增加,阻力系数随筛孔率的增加而减小。此外,阻尼比的值随着相对水头(H/L)的增加而减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Conceptual Large Autonomous Subsea Freight-Glider for Liquid CO2 Transportation Assessment of Wind and Wave High-Resolution Forecasts During High-Energy Weather Events in the Brazilian Coast A Low-Cost Modular Image-Based Approach to Characterize Large-Field Wave Shapes in Glass Wave Flume Coupling of a Boundary Element Method With a Boundary Layer Method for Accurate Rudder Force Calculation Within the Early Design Stage Hydrodynamic Impact on Wedges During Water Entry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1