Estimation of shear wave anisotropy of transversely isotropic medium by full waveform inversion

Satoshi Fuse, H. Mikada, J. Takekawa
{"title":"Estimation of shear wave anisotropy of transversely isotropic medium by full waveform inversion","authors":"Satoshi Fuse, H. Mikada, J. Takekawa","doi":"10.3997/2352-8265.20140221","DOIUrl":null,"url":null,"abstract":"It is necessary to obtain an accurate underground velocity structure to grasp the image of subsurface in seismic survey. Among various estimation methodologies, borehole logging is one of the best ways accurately to estimate the rock elastic properties of the ground around the wellbore. In the conventional study, the combination of Alford rotation with slowness time coherence (STC) has been applied to estimate both the formation velocity and the azimuth angles under the existence of azimuthal anisotropy in the formation. However, it has been revealed the approach with Alford rotation could fail or gives improper estimates when the axis of symmetry of the anisotropic later does not lie in the plane orthogonal to the well axis.\nIn this study, we conduct numerical simulation for transversely isotropic medium (TI) which has 5 independent stiffness elements in 3-dimensional logging model. In recent years, full waveform inversion (FWI) has been focused which could estimate physical properties by using all information of waveforms. We investigate the feasibility of FWI to detect the orientation and dip of TI. We introduce the Euler angles into TI to estimate the stiffness parameters by FWI instead of estimating the stiffness parameters as orthorhombic medium under a hypothesis that the stable solution can be obtained by introducing the Euler angles. This approach can reduce unknowns in FWI, i.e. computational efficiency and stability of inversion could be improved. The result clearly indicates that the FWI for anisotropic medium is effective in order to detect the shear wave anisotropy and stable solution could be obtained according to misfit function even when the anisotropic layer has the dip and orientation.","PeriodicalId":14836,"journal":{"name":"Japan Geoscience Union","volume":"221 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Japan Geoscience Union","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2352-8265.20140221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

It is necessary to obtain an accurate underground velocity structure to grasp the image of subsurface in seismic survey. Among various estimation methodologies, borehole logging is one of the best ways accurately to estimate the rock elastic properties of the ground around the wellbore. In the conventional study, the combination of Alford rotation with slowness time coherence (STC) has been applied to estimate both the formation velocity and the azimuth angles under the existence of azimuthal anisotropy in the formation. However, it has been revealed the approach with Alford rotation could fail or gives improper estimates when the axis of symmetry of the anisotropic later does not lie in the plane orthogonal to the well axis. In this study, we conduct numerical simulation for transversely isotropic medium (TI) which has 5 independent stiffness elements in 3-dimensional logging model. In recent years, full waveform inversion (FWI) has been focused which could estimate physical properties by using all information of waveforms. We investigate the feasibility of FWI to detect the orientation and dip of TI. We introduce the Euler angles into TI to estimate the stiffness parameters by FWI instead of estimating the stiffness parameters as orthorhombic medium under a hypothesis that the stable solution can be obtained by introducing the Euler angles. This approach can reduce unknowns in FWI, i.e. computational efficiency and stability of inversion could be improved. The result clearly indicates that the FWI for anisotropic medium is effective in order to detect the shear wave anisotropy and stable solution could be obtained according to misfit function even when the anisotropic layer has the dip and orientation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用全波形反演估算横向各向同性介质横波各向异性
在地震勘探中,准确获取地下速度结构是掌握地下图像的必要条件。在各种估计方法中,井眼测井是最能准确估计井筒周围地面岩石弹性特性的方法之一。在常规研究中,在存在方位各向异性的情况下,采用Alford旋转与慢速时间相干(STC)相结合的方法来估计地层速度和方位角。然而,当各向异性的对称轴不在与井轴正交的平面上时,Alford旋转方法可能会失败或给出不正确的估计。本文对具有5个独立刚度单元的横向各向同性介质在三维测井模型中进行了数值模拟。全波形反演(full waveinversion, FWI)是近年来研究的热点,它可以利用波形的全部信息来估计物性。我们研究了FWI检测TI取向和倾角的可行性。在引入欧拉角可以得到稳定解的假设下,我们将欧拉角引入到TI中,用FWI估计刚度参数来代替正交介质估计刚度参数。该方法减少了FWI中的未知数,提高了反演的计算效率和稳定性。结果清楚地表明,各向异性介质的FWI对于检测剪切波各向异性是有效的,即使各向异性层具有倾角和方向,根据失配函数也可以得到稳定的解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tectonic Landform and Paleoseismic Activity of the Northernmost Sumatran Fault, Aceh Province, Indonesia Pressure-to-depth conversion models for metamorphic rocks: derivation and applications Standardized Variability Index (SVI): A multiscale index to assess the variability of precipitation Overpressured underthrust sediment in the Nankai Trough forearc inferred from high-frequency receiver function inversion Simple Topographic Parameter for Along-trench Friction Distribution of Shallow Megathrust Fault
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1