Double Polarization SAR Image Classification based on Object-Oriented Technology

Xiuguo Liu, Yongsheng Li, Wei Gao, Lin Xiao
{"title":"Double Polarization SAR Image Classification based on Object-Oriented Technology","authors":"Xiuguo Liu, Yongsheng Li, Wei Gao, Lin Xiao","doi":"10.4236/jgis.2010.22017","DOIUrl":null,"url":null,"abstract":"This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.","PeriodicalId":93313,"journal":{"name":"Journal of geographic information system","volume":"71 1","pages":"113-119"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of geographic information system","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/jgis.2010.22017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposed to use double polarization synthetic aperture radar (SAR) image to classify surface feature, based on DEM. It takes fully use of the polarization information and external information. This pa-per utilizes ENVISAT ASAR APP double-polarization data of Poyang lake area in Jiangxi Province. Com-pared with traditional pixel-based classification, this paper fully uses object features (color, shape, hierarchy) and accessorial DEM information. The classification accuracy improves from the original 73.7% to 91.84%. The result shows that object-oriented classification technology is suitable for double polarization SAR’s high precision classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于面向对象技术的双偏振SAR图像分类
提出了基于DEM的双偏振合成孔径雷达(SAR)图像地物分类方法。它充分利用了极化信息和外部信息。本文利用江西省鄱阳湖地区ENVISAT ASAR APP双极化数据。与传统的基于像素的分类方法相比,本文充分利用了目标特征(颜色、形状、层次)和辅助的DEM信息。分类准确率由原来的73.7%提高到91.84%。结果表明,面向对象分类技术适用于双极化SAR的高精度分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tornado Impacts in the US from 1950-2015: A GIS-Based Analysis of Vulnerability and Evolving Risk Zones for Human Casualties A Spatial Epidemiology Case Study of Coronavirus (COVID-19) Disease and Geospatial Technologies Flood Vulnerability Mapping: A Case Study of Okoko Basin, Osogbo Assessment of the Retail Food Environment Using Integrated GIS and Modified Measures in Wuhan, China Spatiotemporal Analysis of COVID-19 Lockdown Impact on the Land Surface Temperatures of Different Land Cover Types in Louisiana
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1