{"title":"HWCD: A hybrid approach for image compression using wavelet, encryption using confusion, and decryption using diffusion scheme","authors":"H. R. Latha, Alagarswamy Ramaprasath","doi":"10.1515/jisys-2022-9056","DOIUrl":null,"url":null,"abstract":"Abstract Image data play important role in various real-time online and offline applications. Biomedical field has adopted the imaging system to detect, diagnose, and prevent several types of diseases and abnormalities. The biomedical imaging data contain huge information which requires huge storage space. Moreover, currently telemedicine and IoT based remote health monitoring systems are widely developed where data is transmitted from one place to another. Transmission of this type of huge data consumes more bandwidth. Along with this, during this transmission, the attackers can attack the communication channel and obtain the important and secret information. Hence, biomedical image compression and encryption are considered the solution to deal with these issues. Several techniques have been presented but achieving desired performance for combined module is a challenging task. Hence, in this work, a novel combined approach for image compression and encryption is developed. First, image compression scheme using wavelet transform is presented and later a cryptography scheme is presented using confusion and diffusion schemes. The outcome of the proposed approach is compared with various existing techniques. The experimental analysis shows that the proposed approach achieves better performance in terms of autocorrelation, histogram, information entropy, PSNR, MSE, and SSIM.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-9056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract Image data play important role in various real-time online and offline applications. Biomedical field has adopted the imaging system to detect, diagnose, and prevent several types of diseases and abnormalities. The biomedical imaging data contain huge information which requires huge storage space. Moreover, currently telemedicine and IoT based remote health monitoring systems are widely developed where data is transmitted from one place to another. Transmission of this type of huge data consumes more bandwidth. Along with this, during this transmission, the attackers can attack the communication channel and obtain the important and secret information. Hence, biomedical image compression and encryption are considered the solution to deal with these issues. Several techniques have been presented but achieving desired performance for combined module is a challenging task. Hence, in this work, a novel combined approach for image compression and encryption is developed. First, image compression scheme using wavelet transform is presented and later a cryptography scheme is presented using confusion and diffusion schemes. The outcome of the proposed approach is compared with various existing techniques. The experimental analysis shows that the proposed approach achieves better performance in terms of autocorrelation, histogram, information entropy, PSNR, MSE, and SSIM.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.