Consistent thinning of large geographical data for map visualization

IF 2.2 2区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS ACM Transactions on Database Systems Pub Date : 2013-11-01 DOI:10.1145/2539032.2539034
A. Sarma, Hongrae Lee, Hector Gonzalez, J. Madhavan, A. Halevy
{"title":"Consistent thinning of large geographical data for map visualization","authors":"A. Sarma, Hongrae Lee, Hector Gonzalez, J. Madhavan, A. Halevy","doi":"10.1145/2539032.2539034","DOIUrl":null,"url":null,"abstract":"Large-scale map visualization systems play an increasingly important role in presenting geographic datasets to end-users. Since these datasets can be extremely large, a map rendering system often needs to select a small fraction of the data to visualize them in a limited space. This article addresses the fundamental challenge of thinning: determining appropriate samples of data to be shown on specific geographical regions and zoom levels. Other than the sheer scale of the data, the thinning problem is challenging because of a number of other reasons: (1) data can consist of complex geographical shapes, (2) rendering of data needs to satisfy certain constraints, such as data being preserved across zoom levels and adjacent regions, and (3) after satisfying the constraints, an optimal solution needs to be chosen based on objectives such as maximality, fairness, and importance of data.\n This article formally defines and presents a complete solution to the thinning problem. First, we express the problem as an integer programming formulation that efficiently solves thinning for desired objectives. Second, we present more efficient solutions for maximality, based on DFS traversal of a spatial tree. Third, we consider the common special case of point datasets, and present an even more efficient randomized algorithm. Fourth, we show that contiguous regions are tractable for a general version of maximality for which arbitrary regions are intractable. Fifth, we examine the structure of our integer programming formulation and show that for point datasets, our program is integral. Finally, we have implemented all techniques from this article in Google Maps [Google 2005] visualizations of fusion tables [Gonzalez et al. 2010], and we describe a set of experiments that demonstrate the trade-offs among the algorithms.","PeriodicalId":50915,"journal":{"name":"ACM Transactions on Database Systems","volume":"38 1","pages":"22"},"PeriodicalIF":2.2000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2539032.2539034","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 13

Abstract

Large-scale map visualization systems play an increasingly important role in presenting geographic datasets to end-users. Since these datasets can be extremely large, a map rendering system often needs to select a small fraction of the data to visualize them in a limited space. This article addresses the fundamental challenge of thinning: determining appropriate samples of data to be shown on specific geographical regions and zoom levels. Other than the sheer scale of the data, the thinning problem is challenging because of a number of other reasons: (1) data can consist of complex geographical shapes, (2) rendering of data needs to satisfy certain constraints, such as data being preserved across zoom levels and adjacent regions, and (3) after satisfying the constraints, an optimal solution needs to be chosen based on objectives such as maximality, fairness, and importance of data. This article formally defines and presents a complete solution to the thinning problem. First, we express the problem as an integer programming formulation that efficiently solves thinning for desired objectives. Second, we present more efficient solutions for maximality, based on DFS traversal of a spatial tree. Third, we consider the common special case of point datasets, and present an even more efficient randomized algorithm. Fourth, we show that contiguous regions are tractable for a general version of maximality for which arbitrary regions are intractable. Fifth, we examine the structure of our integer programming formulation and show that for point datasets, our program is integral. Finally, we have implemented all techniques from this article in Google Maps [Google 2005] visualizations of fusion tables [Gonzalez et al. 2010], and we describe a set of experiments that demonstrate the trade-offs among the algorithms.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为地图可视化而持续细化大型地理数据
大规模地图可视化系统在向最终用户呈现地理数据集方面发挥着越来越重要的作用。由于这些数据集可能非常大,因此地图渲染系统通常需要在有限的空间中选择一小部分数据来可视化它们。本文解决了细化的基本挑战:确定要在特定地理区域和缩放级别上显示的适当数据样本。除了数据的绝对规模之外,细化问题具有挑战性,因为许多其他原因:(1)数据可能由复杂的地理形状组成,(2)数据的呈现需要满足某些约束,例如跨缩放级别和相邻区域保存的数据,以及(3)在满足约束之后,需要根据数据的最大化,公平性和重要性等目标选择最优解决方案。本文正式定义并提出了细化问题的完整解决方案。首先,我们将问题表示为一个整数规划公式,有效地解决了期望目标的细化问题。其次,我们提出了基于空间树的DFS遍历的更有效的最大化解决方案。第三,我们考虑了点数据集的常见特殊情况,并提出了一种更有效的随机化算法。第四,我们证明了对于任意区域难以处理的最大值的一般版本,连续区域是可处理的。第五,我们检查了我们的整数规划公式的结构,并表明对于点数据集,我们的程序是积分的。最后,我们在谷歌地图[Google 2005]融合表可视化[Gonzalez et al. 2010]中实现了本文中的所有技术,并描述了一组实验,展示了算法之间的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Database Systems
ACM Transactions on Database Systems 工程技术-计算机:软件工程
CiteScore
5.60
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Heavily used in both academic and corporate R&D settings, ACM Transactions on Database Systems (TODS) is a key publication for computer scientists working in data abstraction, data modeling, and designing data management systems. Topics include storage and retrieval, transaction management, distributed and federated databases, semantics of data, intelligent databases, and operations and algorithms relating to these areas. In this rapidly changing field, TODS provides insights into the thoughts of the best minds in database R&D.
期刊最新文献
Automated Category Tree Construction: Hardness Bounds and Algorithms Database Repairing with Soft Functional Dependencies Sharing Queries with Nonequivalent User-Defined Aggregate Functions A family of centrality measures for graph data based on subgraphs GraphZeppelin: How to Find Connected Components (Even When Graphs Are Dense, Dynamic, and Massive)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1