A Practical Approach to Discretised PDDL+ Problems by Translation to Numeric Planning

IF 4.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Journal of Artificial Intelligence Research Pub Date : 2023-01-06 DOI:10.1613/jair.1.13904
Francesco Percassi, Enrico Scala, M. Vallati
{"title":"A Practical Approach to Discretised PDDL+ Problems by Translation to Numeric Planning","authors":"Francesco Percassi, Enrico Scala, M. Vallati","doi":"10.1613/jair.1.13904","DOIUrl":null,"url":null,"abstract":"PDDL+ models are advanced models of hybrid systems and the resulting problems are notoriously difficult for planning engines to cope with. An additional limiting factor for the exploitation of PDDL+ approaches in real-world applications is the restricted number of domain-independent planning engines that can reason upon those models.\nWith the aim of deepening the understanding of PDDL+ models, in this work, we study a novel mapping between a time discretisation of pddl+ and numeric planning as for PDDL2.1 (level 2). The proposed mapping not only clarifies the relationship between these two formalisms but also enables the use of a wider pool of engines, thus fostering the use of hybrid planning in real-world applications. Our experimental analysis shows the usefulness of the proposed translation and demonstrates the potential of the approach for improving the solvability of complex PDDL+ instances.","PeriodicalId":54877,"journal":{"name":"Journal of Artificial Intelligence Research","volume":null,"pages":null},"PeriodicalIF":4.5000,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Artificial Intelligence Research","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1613/jair.1.13904","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 3

Abstract

PDDL+ models are advanced models of hybrid systems and the resulting problems are notoriously difficult for planning engines to cope with. An additional limiting factor for the exploitation of PDDL+ approaches in real-world applications is the restricted number of domain-independent planning engines that can reason upon those models. With the aim of deepening the understanding of PDDL+ models, in this work, we study a novel mapping between a time discretisation of pddl+ and numeric planning as for PDDL2.1 (level 2). The proposed mapping not only clarifies the relationship between these two formalisms but also enables the use of a wider pool of engines, thus fostering the use of hybrid planning in real-world applications. Our experimental analysis shows the usefulness of the proposed translation and demonstrates the potential of the approach for improving the solvability of complex PDDL+ instances.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
离散PDDL+问题转化为数值规划的实用方法
PDDL+模型是混合动力系统的高级模型,由此产生的问题对于规划发动机来说是非常困难的。在实际应用程序中利用PDDL+方法的另一个限制因素是,可以在这些模型上进行推理的领域独立规划引擎的数量有限。为了加深对PDDL+模型的理解,在这项工作中,我们研究了PDDL+的时间离散化和PDDL2.1(2级)的数值规划之间的一种新的映射。所提出的映射不仅澄清了这两种形式之间的关系,而且还允许使用更广泛的引擎池,从而促进了混合规划在现实世界应用中的使用。我们的实验分析表明了所提出的翻译的有效性,并证明了该方法在提高复杂PDDL+实例的可解性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Artificial Intelligence Research
Journal of Artificial Intelligence Research 工程技术-计算机:人工智能
CiteScore
9.60
自引率
4.00%
发文量
98
审稿时长
4 months
期刊介绍: JAIR(ISSN 1076 - 9757) covers all areas of artificial intelligence (AI), publishing refereed research articles, survey articles, and technical notes. Established in 1993 as one of the first electronic scientific journals, JAIR is indexed by INSPEC, Science Citation Index, and MathSciNet. JAIR reviews papers within approximately three months of submission and publishes accepted articles on the internet immediately upon receiving the final versions. JAIR articles are published for free distribution on the internet by the AI Access Foundation, and for purchase in bound volumes by AAAI Press.
期刊最新文献
Symbolic Task Inference in Deep Reinforcement Learning Axiomatization of Non-Recursive Aggregates in First-Order Answer Set Programming Unifying SAT-Based Approaches to Maximum Satisfiability Solving The TOAD System for Totally Ordered HTN Planning Mitigating Value Hallucination in Dyna-Style Planning via Multistep Predecessor Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1