Big data challenges for large radio arrays

D. Jones, K. Wagstaff, D. Thompson, L. D'Addario, R. Navarro, C. Mattmann, W. Majid, J. Lazio, R. Preston, U. Rebbapragada
{"title":"Big data challenges for large radio arrays","authors":"D. Jones, K. Wagstaff, D. Thompson, L. D'Addario, R. Navarro, C. Mattmann, W. Majid, J. Lazio, R. Preston, U. Rebbapragada","doi":"10.1109/AERO.2012.6187090","DOIUrl":null,"url":null,"abstract":"Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a \"big data\" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields. The Jet Propulsion Laboratory is developing technologies to address big data issues, with an emphasis in three areas: 1) Lower-power digital processing architectures to make highvolume data generation operationally affordable, 2) Date-adaptive machine learning algorithms for real-time analysis (or \"data triage\") of large data volumes, and 3) Scalable data archive systems that allow efficient data mining and remote user code to run locally where the data are stored.","PeriodicalId":6421,"journal":{"name":"2012 IEEE Aerospace Conference","volume":"150 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Aerospace Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AERO.2012.6187090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Future large radio astronomy arrays, particularly the Square Kilometre Array (SKA), will be able to generate data at rates far higher than can be analyzed or stored affordably with current practices. This is, by definition, a "big data" problem, and requires an end-to-end solution if future radio arrays are to reach their full scientific potential. Similar data processing, transport, storage, and management challenges face next-generation facilities in many other fields. The Jet Propulsion Laboratory is developing technologies to address big data issues, with an emphasis in three areas: 1) Lower-power digital processing architectures to make highvolume data generation operationally affordable, 2) Date-adaptive machine learning algorithms for real-time analysis (or "data triage") of large data volumes, and 3) Scalable data archive systems that allow efficient data mining and remote user code to run locally where the data are stored.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型无线电阵列面临的大数据挑战
未来的大型射电天文阵列,特别是平方公里阵列(SKA),将能够以远高于当前实践可承受的分析或存储速率的速度生成数据。根据定义,这是一个“大数据”问题,如果未来的无线电阵列要充分发挥其科学潜力,就需要一个端到端的解决方案。类似的数据处理、传输、存储和管理挑战也面临着许多其他领域的下一代设施。喷气推进实验室正在开发解决大数据问题的技术,重点放在三个领域:1)低功耗数字处理架构,使大容量数据生成在操作上负担得起;2)用于大数据量实时分析(或“数据分类”)的日期自适应机器学习算法;3)可扩展的数据归档系统,允许高效的数据挖掘和远程用户代码在数据存储的本地运行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Low-cost telepresence at technical conferences Design of a Stellar Gyroscope for visual attitude propagation for small satellites A cooperative search algorithm for highly parallel implementation of RANSAC for model estimation on Tilera MIMD architecture Open source software framework for applications in aeronautics and space Robonaut 2 — Initial activities on-board the ISS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1