Multi-objective regression modeling for natural gas prediction with ridge regression and CMARS

Ayse Ozmen
{"title":"Multi-objective regression modeling for natural gas prediction with ridge regression and CMARS","authors":"Ayse Ozmen","doi":"10.11121/ijocta.2022.1084","DOIUrl":null,"url":null,"abstract":"Residential customers are the main users generally need a great quantity of natural gas in distribution systems, especially, in the wintry weather season since it is particularly consumed for cooking and space heating. Hence, it ought to be non-interruptible. Since distribution systems have a restricted ability for supply, reasonable planning and prediction through the whole year, especially in winter seasons, have emerged as vital. The Ridge Regression (RR) is formulated mainly to decrease collinearity results through shrinking the regression coefficients and reducing the impact in the model of variables. Conic multivariate adaptive regression splines ((C)MARS) model is constructed as an effective choice for MARS by using inverse problems, statistical learning, and multi-objective optimization theories. In this approach, the model complexity is penalized in the structure of RR and it is constructed a relaxation by utilizing continuous optimization, called Conic Quadratic Programming (CQP). In this study, CMARS and RR are applied to obtain forecasts of residential natural gas demand for local distribution companies (LDCs) that require short-term forecasts, and the model performances are compared by using some criteria. Here, our analysis shows that CMARS models outperform RR models. For one-day-ahead forecasts, CMARS yields a MAPE of about 4.8%, while the same value under RR reaches 8.5%. As the forecast horizon increases, it can be seen that the performance of the methods becomes worse, and for a forecast one week ahead, the MAPE values for CMARS and RR are 9.9% and 18.3%, respectively.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"30 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2022.1084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 4

Abstract

Residential customers are the main users generally need a great quantity of natural gas in distribution systems, especially, in the wintry weather season since it is particularly consumed for cooking and space heating. Hence, it ought to be non-interruptible. Since distribution systems have a restricted ability for supply, reasonable planning and prediction through the whole year, especially in winter seasons, have emerged as vital. The Ridge Regression (RR) is formulated mainly to decrease collinearity results through shrinking the regression coefficients and reducing the impact in the model of variables. Conic multivariate adaptive regression splines ((C)MARS) model is constructed as an effective choice for MARS by using inverse problems, statistical learning, and multi-objective optimization theories. In this approach, the model complexity is penalized in the structure of RR and it is constructed a relaxation by utilizing continuous optimization, called Conic Quadratic Programming (CQP). In this study, CMARS and RR are applied to obtain forecasts of residential natural gas demand for local distribution companies (LDCs) that require short-term forecasts, and the model performances are compared by using some criteria. Here, our analysis shows that CMARS models outperform RR models. For one-day-ahead forecasts, CMARS yields a MAPE of about 4.8%, while the same value under RR reaches 8.5%. As the forecast horizon increases, it can be seen that the performance of the methods becomes worse, and for a forecast one week ahead, the MAPE values for CMARS and RR are 9.9% and 18.3%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
脊回归与CMARS天然气预测的多目标回归建模
住宅客户是主要用户,通常在配电系统中需要大量的天然气,特别是在冬季,因为它特别用于烹饪和空间供暖。因此,它应该是不可中断的。由于配电系统的供应能力有限,因此全年,特别是冬季的合理规划和预测变得至关重要。岭回归(Ridge Regression, RR)的主要目的是通过缩小回归系数和减少变量在模型中的影响来减少共线性结果。利用逆问题、统计学习和多目标优化理论,构建了二次多元自适应回归样条((C)MARS)模型,作为MARS的有效选择。在这种方法中,模型复杂性在RR结构中受到惩罚,并通过使用连续优化构造松弛,称为二次规划(CQP)。本研究将CMARS和RR应用于需要短期预测的地方分销公司(ldc)的居民天然气需求预测,并使用一些标准对模型的性能进行比较。这里,我们的分析表明,CMARS模型优于RR模型。对于一天前的预测,CMARS的MAPE约为4.8%,而RR下的MAPE约为8.5%。随着预测水平的增加,可以看出方法的性能变差,对于一周前的预测,CMARS和RR的MAPE值分别为9.9%和18.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
期刊最新文献
Bin packing problem with restricted item fragmentation: Assignment of jobs in multi-product assembly environment with overtime Scheduling of distributed additive manufacturing machines considering carbon emissions The effect of fractional order mathematical modelling for examination of academic achievement in schools with stochastic behaviors The solvability of the optimal control problem for a nonlinear Schrödinger equation Regional enlarged controllability of a fractional derivative of an output linear system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1