M. Hughes, Mariah Mook, M. Jenkins, Arun Vishnu SureshBabu, Ashok Gopalarathnam, M. Bryant
{"title":"Flow Disturbance Generators Based on Oscillating Cylinders With Attached Splitter Plates","authors":"M. Hughes, Mariah Mook, M. Jenkins, Arun Vishnu SureshBabu, Ashok Gopalarathnam, M. Bryant","doi":"10.1115/imece2021-69467","DOIUrl":null,"url":null,"abstract":"\n The interaction between upstream flow disturbance generators and downstream aeroelastic structures has been the focus of several recent studies at North Carolina State University. Building on this work, which observed the modulation of limit cycle oscillations (LCOs) in the presence of vortex wakes, this study examines the design and validation of a novel disturbance generator consisting of an oscillating cylinder with an attached splitter plate. Analytical design of the bluff body was performed based on specific flow conditions which produced LCO annihilation in previous studies. Computational fluid dynamics simulations and experimental wind tunnel tests were used to validate the ability of the new disturbance generator to produce the desired wake region. Future work will see the implementation of this novel design in conjunction with aeroelastic structures in an effort to modulate and control LCOs, including the excitation and annihilation thereof.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":"71 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-69467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
The interaction between upstream flow disturbance generators and downstream aeroelastic structures has been the focus of several recent studies at North Carolina State University. Building on this work, which observed the modulation of limit cycle oscillations (LCOs) in the presence of vortex wakes, this study examines the design and validation of a novel disturbance generator consisting of an oscillating cylinder with an attached splitter plate. Analytical design of the bluff body was performed based on specific flow conditions which produced LCO annihilation in previous studies. Computational fluid dynamics simulations and experimental wind tunnel tests were used to validate the ability of the new disturbance generator to produce the desired wake region. Future work will see the implementation of this novel design in conjunction with aeroelastic structures in an effort to modulate and control LCOs, including the excitation and annihilation thereof.