Succinct interval-splitting tree for scalable similarity search of compound-protein pairs with property constraints

Yasuo Tabei, Akihiro Kishimoto, Masaaki Kotera, Yoshihiro Yamanishi
{"title":"Succinct interval-splitting tree for scalable similarity search of compound-protein pairs with property constraints","authors":"Yasuo Tabei, Akihiro Kishimoto, Masaaki Kotera, Yoshihiro Yamanishi","doi":"10.1145/2487575.2487637","DOIUrl":null,"url":null,"abstract":"Analyzing functional interactions between small compounds and proteins is indispensable in genomic drug discovery. Since rich information on various compound-protein inter- actions is available in recent molecular databases, strong demands for making best use of such databases require to in- vent powerful methods to help us find new functional compound-protein pairs on a large scale. We present the succinct interval-splitting tree algorithm (SITA) that efficiently per- forms similarity search in databases for compound-protein pairs with respect to both binary fingerprints and real-valued properties. SITA achieves both time and space efficiency by developing the data structure called interval-splitting trees, which enables to efficiently prune the useless portions of search space, and by incorporating the ideas behind wavelet tree, a succinct data structure to compactly represent trees. We experimentally test SITA on the ability to retrieve similar compound-protein pairs/substrate-product pairs for a query from large databases with over 200 million compound- protein pairs/substrate-product pairs and show that SITA performs better than other possible approaches.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2487637","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Analyzing functional interactions between small compounds and proteins is indispensable in genomic drug discovery. Since rich information on various compound-protein inter- actions is available in recent molecular databases, strong demands for making best use of such databases require to in- vent powerful methods to help us find new functional compound-protein pairs on a large scale. We present the succinct interval-splitting tree algorithm (SITA) that efficiently per- forms similarity search in databases for compound-protein pairs with respect to both binary fingerprints and real-valued properties. SITA achieves both time and space efficiency by developing the data structure called interval-splitting trees, which enables to efficiently prune the useless portions of search space, and by incorporating the ideas behind wavelet tree, a succinct data structure to compactly represent trees. We experimentally test SITA on the ability to retrieve similar compound-protein pairs/substrate-product pairs for a query from large databases with over 200 million compound- protein pairs/substrate-product pairs and show that SITA performs better than other possible approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有性质约束的化合物-蛋白质对可扩展相似性搜索的简洁性区间分裂树
分析小分子化合物与蛋白质之间的功能相互作用在基因组药物发现中是必不可少的。由于最近的分子数据库提供了丰富的关于各种化合物-蛋白质相互作用的信息,因此对充分利用这些数据库的强烈需求要求开发强大的方法来帮助我们大规模地发现新的功能化合物-蛋白质对。我们提出了一种简洁的区间分割树算法(SITA),该算法可以有效地在数据库中对化合物-蛋白质对的二值指纹和实值性质进行相似性搜索。SITA通过开发称为间隔分割树的数据结构来实现时间和空间效率,该数据结构能够有效地修剪搜索空间中无用的部分,并通过合并小波树背后的思想,一种简洁的数据结构来紧凑地表示树。我们通过实验测试了SITA从超过2亿个化合物蛋白质对/底物产物对的大型数据库中检索相似化合物蛋白质对/底物产物对的能力,并表明SITA比其他可能的方法表现得更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A general bootstrap performance diagnostic Flexible and robust co-regularized multi-domain graph clustering Beyond myopic inference in big data pipelines Constrained stochastic gradient descent for large-scale least squares problem Inferring distant-time location in low-sampling-rate trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1