Green routes towards industrial textile dyeing: A laccase based approach

Cinzia Pezzella , Simona Giacobbe , Valerio Guido Giacobelli , Lucia Guarino , Sibel Kylic , Mehmet Sener , Giovanni Sannia , Alessandra Piscitelli
{"title":"Green routes towards industrial textile dyeing: A laccase based approach","authors":"Cinzia Pezzella ,&nbsp;Simona Giacobbe ,&nbsp;Valerio Guido Giacobelli ,&nbsp;Lucia Guarino ,&nbsp;Sibel Kylic ,&nbsp;Mehmet Sener ,&nbsp;Giovanni Sannia ,&nbsp;Alessandra Piscitelli","doi":"10.1016/j.molcatb.2016.11.016","DOIUrl":null,"url":null,"abstract":"<div><p>Laccase-catalyzed synthesis of dye molecules represents a green choice to reduce the environmental footprint of conventional synthetic processes. Textile industry will benefit from this green technology since the synthesized dyes can be exploited to colour different fabrics.</p><p>This work describes the application of the <em>Pleurotus ostreatus</em> POXA1b laccase in polymeric dye synthesis using resorcinol and 2,5-diaminobenzenesulfonic acid (2,5-DABSA) as substrates. The potential of the resorcinol/2,5-DABSA coupling route was transferred to a chemical industry, Setaş Colour Center, by introducing a greener synthesis step within the process routinely used for textile dyeing. Dye synthesis was performed at different precursor ratios (1:1 and 1:10 2,5-DABSA: resorcinol) and their dyeing properties were compared on different fibres. The two mixtures of synthesized dyes proved to be effective on nylon and wool, with 1:10 ratio displaying the best performances in terms of dyeing efficiency and colour strength. Good and comparable end quality and “performances during use” were observed for nylon and wool coloured with both synthesized dyes.</p></div>","PeriodicalId":16416,"journal":{"name":"Journal of Molecular Catalysis B-enzymatic","volume":"134 ","pages":"Pages 274-279"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.molcatb.2016.11.016","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Catalysis B-enzymatic","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1381117716302296","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Chemical Engineering","Score":null,"Total":0}
引用次数: 35

Abstract

Laccase-catalyzed synthesis of dye molecules represents a green choice to reduce the environmental footprint of conventional synthetic processes. Textile industry will benefit from this green technology since the synthesized dyes can be exploited to colour different fabrics.

This work describes the application of the Pleurotus ostreatus POXA1b laccase in polymeric dye synthesis using resorcinol and 2,5-diaminobenzenesulfonic acid (2,5-DABSA) as substrates. The potential of the resorcinol/2,5-DABSA coupling route was transferred to a chemical industry, Setaş Colour Center, by introducing a greener synthesis step within the process routinely used for textile dyeing. Dye synthesis was performed at different precursor ratios (1:1 and 1:10 2,5-DABSA: resorcinol) and their dyeing properties were compared on different fibres. The two mixtures of synthesized dyes proved to be effective on nylon and wool, with 1:10 ratio displaying the best performances in terms of dyeing efficiency and colour strength. Good and comparable end quality and “performances during use” were observed for nylon and wool coloured with both synthesized dyes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
工业纺织品染色的绿色路线:漆酶为基础的方法
漆酶催化的染料分子合成代表了一种绿色选择,以减少传统合成过程的环境足迹。纺织工业将受益于这种绿色技术,因为合成的染料可以用来给不同的织物上色。本文介绍了平菇POXA1b漆酶在间苯二酚和2,5-二氨基苯磺酸(2,5- dabsa)为底物合成聚合染料中的应用。间苯二酚/2,5- dabsa偶联路线的潜力通过在纺织染色常规过程中引入更环保的合成步骤,转移到化学工业setasu Colour Center。以不同的前驱物比例(1:1和1:10 2,5- dabsa:间苯二酚)进行染料合成,并比较其在不同纤维上的染色性能。两种合成染料的混合对尼龙和羊毛均有较好的染色效果,以1:10的比例染色效果最好。用这两种合成染料染色尼龙和羊毛的最终质量和“使用过程中的性能”都很好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Molecular Catalysis B-enzymatic
Journal of Molecular Catalysis B-enzymatic 生物-生化与分子生物学
CiteScore
2.58
自引率
0.00%
发文量
0
审稿时长
3.4 months
期刊介绍: Journal of Molecular Catalysis B: Enzymatic is an international forum for researchers and product developers in the applications of whole-cell and cell-free enzymes as catalysts in organic synthesis. Emphasis is on mechanistic and synthetic aspects of the biocatalytic transformation. Papers should report novel and significant advances in one or more of the following topics; Applied and fundamental studies of enzymes used for biocatalysis; Industrial applications of enzymatic processes, e.g. in fine chemical synthesis; Chemo-, regio- and enantioselective transformations; Screening for biocatalysts; Integration of biocatalytic and chemical steps in organic syntheses; Novel biocatalysts, e.g. enzymes from extremophiles and catalytic antibodies; Enzyme immobilization and stabilization, particularly in non-conventional media; Bioprocess engineering aspects, e.g. membrane bioreactors; Improvement of catalytic performance of enzymes, e.g. by protein engineering or chemical modification; Structural studies, including computer simulation, relating to substrate specificity and reaction selectivity; Biomimetic studies related to enzymatic transformations.
期刊最新文献
A highly efficient immobilized MAS1 lipase for the glycerolysis reaction of n-3 PUFA-rich ethyl esters A more polar N-terminal helix releases MBP-tagged Thermus thermophilus proline dehydrogenase from tetramer-polymer self-association Investigation of structural stability and enzymatic activity of glucose oxidase and its subunits A new member of family 8 polysaccharide lyase chondroitin AC lyase (PsPL8A) from Pedobacter saltans displays endo- and exo-lytic catalysis Special issue OxiZymes 2016
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1