Detecting memory errors at runtime with source-level instrumentation

Zhe Chen, Junqi Yan, Shuanglong Kan, Ju Qian, Jingling Xue
{"title":"Detecting memory errors at runtime with source-level instrumentation","authors":"Zhe Chen, Junqi Yan, Shuanglong Kan, Ju Qian, Jingling Xue","doi":"10.1145/3293882.3330581","DOIUrl":null,"url":null,"abstract":"The unsafe language features of C, such as low-level control of memory, often lead to memory errors, which can result in silent data corruption, security vulnerabilities, and program crashes. Dynamic analysis tools, which have been widely used for detecting memory errors at runtime, usually perform instrumentation at the IR-level or binary-level. However, their underlying non-source-level instrumentation techniques have three inherent limitations: optimization sensitivity, platform dependence and DO-178C non-compliance. Due to optimization sensitivity, these tools are used to trade either performance for effectiveness by compiling the program at -O0 or effectiveness for performance by compiling the program at a higher optimization level, say, -O3. In this paper, we overcome these three limitations by proposing a new source-level instrumentation technique and implementing it in a new dynamic analysis tool, called MOVEC, in a pointer-based instrumentation framework. Validation against a set of 86 microbenchmarks (with ground truth) and a set of 10 MiBench benchmarks shows that MOVEC outperforms state-of-the-art tools, SoftBoundCETS, Google's AddressSanitizer and Valgrind, in terms of both effectiveness and performance considered together.","PeriodicalId":20624,"journal":{"name":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th ACM SIGSOFT International Symposium on Software Testing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3293882.3330581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The unsafe language features of C, such as low-level control of memory, often lead to memory errors, which can result in silent data corruption, security vulnerabilities, and program crashes. Dynamic analysis tools, which have been widely used for detecting memory errors at runtime, usually perform instrumentation at the IR-level or binary-level. However, their underlying non-source-level instrumentation techniques have three inherent limitations: optimization sensitivity, platform dependence and DO-178C non-compliance. Due to optimization sensitivity, these tools are used to trade either performance for effectiveness by compiling the program at -O0 or effectiveness for performance by compiling the program at a higher optimization level, say, -O3. In this paper, we overcome these three limitations by proposing a new source-level instrumentation technique and implementing it in a new dynamic analysis tool, called MOVEC, in a pointer-based instrumentation framework. Validation against a set of 86 microbenchmarks (with ground truth) and a set of 10 MiBench benchmarks shows that MOVEC outperforms state-of-the-art tools, SoftBoundCETS, Google's AddressSanitizer and Valgrind, in terms of both effectiveness and performance considered together.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用源代码级检测在运行时检测内存错误
C语言的不安全的语言特性,比如内存的低级控制,经常会导致内存错误,从而导致静默数据损坏、安全漏洞和程序崩溃。动态分析工具已被广泛用于在运行时检测内存错误,它们通常在ir级或二进制级执行检测。然而,它们的底层非源代码级检测技术有三个固有的局限性:优化敏感性、平台依赖性和不符合DO-178C。由于优化的敏感性,这些工具要么通过在- 0编译程序来换取性能的有效性,要么通过在更高的优化级别(例如- 0)编译程序来换取性能的有效性。在本文中,我们通过提出一种新的源代码级插装技术,并在一个新的动态分析工具MOVEC中实现它,克服了这三个限制。MOVEC是一个基于指针的插装框架。对一组86个微基准测试(具有基本事实)和一组10个MiBench基准测试的验证表明,MOVEC在有效性和性能方面都优于最先进的工具,如softboundcts、谷歌的AddressSanitizer和Valgrind。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ISSTA '22: 31st ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, South Korea, July 18 - 22, 2022 ISSTA '21: 30th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, Denmark, July 11-17, 2021 Automatic support for the identification of infeasible testing requirements Program-aware fuzzing for MQTT applications ISSTA '20: 29th ACM SIGSOFT International Symposium on Software Testing and Analysis, Virtual Event, USA, July 18-22, 2020
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1