Optical Communication Infrastructure in New Generation Mobile Networks

IF 2.3 4区 物理与天体物理 Q2 OPTICS Fiber and Integrated Optics Pub Date : 2023-03-04 DOI:10.1080/01468030.2023.2186811
Murat Yücel, Muharrem Açikgöz
{"title":"Optical Communication Infrastructure in New Generation Mobile Networks","authors":"Murat Yücel, Muharrem Açikgöz","doi":"10.1080/01468030.2023.2186811","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this study, predictions by leading network technology companies and current literature on 5 G technologies have been investigated to shed a light on the foreseeable future of the developing communication systems infrastructure. Research has been carried out on the new-generation optical communication infrastructure, which is developing in parallel with the requirements of 5 G and beyond mobile communication systems, and optical-wireless communication (OWC), free-space optical communication (FSOC), visible-light communication (VLC), and optical-camera communication (OCC) is presented. Also, there is information about fiber-wireless (FiWi) and radio-over fiber (RoF) transmission systems and FSO system integration (RoFSO), which finds use as an infrastructure component in the next-generation high-frequency communication.","PeriodicalId":50449,"journal":{"name":"Fiber and Integrated Optics","volume":"41 1","pages":"53 - 92"},"PeriodicalIF":2.3000,"publicationDate":"2023-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fiber and Integrated Optics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1080/01468030.2023.2186811","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 6

Abstract

ABSTRACT In this study, predictions by leading network technology companies and current literature on 5 G technologies have been investigated to shed a light on the foreseeable future of the developing communication systems infrastructure. Research has been carried out on the new-generation optical communication infrastructure, which is developing in parallel with the requirements of 5 G and beyond mobile communication systems, and optical-wireless communication (OWC), free-space optical communication (FSOC), visible-light communication (VLC), and optical-camera communication (OCC) is presented. Also, there is information about fiber-wireless (FiWi) and radio-over fiber (RoF) transmission systems and FSO system integration (RoFSO), which finds use as an infrastructure component in the next-generation high-frequency communication.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新一代移动网络中的光通信基础设施
在本研究中,研究了领先的网络技术公司的预测和当前关于5g技术的文献,以揭示发展中的通信系统基础设施的可预见未来。对与5g及以上移动通信系统并行发展的新一代光通信基础设施进行了研究,提出了光无线通信(OWC)、自由空间光通信(FSOC)、可见光通信(VLC)和光相机通信(OCC)。此外,还有关于光纤无线(FiWi)和光纤无线(RoF)传输系统和FSO系统集成(RoFSO)的信息,它们被用作下一代高频通信的基础设施组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
4
审稿时长
>12 weeks
期刊介绍: Fiber and Integrated Optics , now incorporating the International Journal of Optoelectronics, is an international bimonthly journal that disseminates significant developments and in-depth surveys in the fields of fiber and integrated optics. The journal is unique in bridging the major disciplines relevant to optical fibers and electro-optical devices. This results in a balanced presentation of basic research, systems applications, and economics. For more than a decade, Fiber and Integrated Optics has been a valuable forum for scientists, engineers, manufacturers, and the business community to exchange and discuss techno-economic advances in the field.
期刊最新文献
Investigation of Dual-Layer Si-ITO-Dielectric Based Hybrid Plasmonic Electro-Absorption Modulator at 1.55 µm Wavelength Theoretical and Practical Bounds on the Initial Value of Clock Skew Compensation Algorithm Immune to Floating-Point Precision Loss for Resource-Constrained Wireless Sensor Nodes Enhancing the Secure Transmission of Data Over Optical Fiber Networks from Source to Destination Optimizing Energy Resources in WSNs: ARIMA Feature Selection Meets Adaptive Reinforcement Learning Digitalized Radio over Fiber Network-Based Sigma Delta Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1