{"title":"Advanced Inspection Technologies for Corrosion Underneath Splash Zone Riser Hangers and Clamps","authors":"Kamonwan Ruangpattanatawee, Chatchai Laemkhowthong, Suthisak Thepsriha, Sorakom Promsakulchai, M. Thammachart, Chanapol Limsakul, Athipkiat Lertthanasart","doi":"10.4043/31679-ms","DOIUrl":null,"url":null,"abstract":"\n Corrosion underneath riser hangers and clamps in the splash zone area is historically challenging for inspectors. It is a chronic problem for offshore pipeline operators which could lead to significant failures and loss of primary containment. When the degradation of the protective coating system occurs, it will result in external severe corrosion. The splash zone riser is exposed to intermittent seawater wetting. Especially at crevice areas which can form and accelerate small concentration corrosion cells creating indiscernible localized corrosion or deep grooves.\n Close visual inspection (CVI) is a conventional nondestructive examination (NDE) technique to notify a sign of corrosion. This is a very subjective and qualitative measurement. Wall loss, depth, and sizing are unknown. In order to identify the condition underneath the riser clamp without clamp removal, the company has studied the principle of advanced NDE techniques, mockup tests, and field trials. The main objective is to identify, quantify, and prioritize the severity of corrosion anomalies underneath the clamp for further maintenance and repair plans to prevent pipeline failure. The selected techniques are Computed Radiography Testing (CRT), Medium-Range Ultrasonic testing (MRUT), and Long-Range Ultrasonic testing (LRUT). The result shows that LRUT can be further developed to suit the company's purposes.","PeriodicalId":11011,"journal":{"name":"Day 3 Thu, March 24, 2022","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 3 Thu, March 24, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31679-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Corrosion underneath riser hangers and clamps in the splash zone area is historically challenging for inspectors. It is a chronic problem for offshore pipeline operators which could lead to significant failures and loss of primary containment. When the degradation of the protective coating system occurs, it will result in external severe corrosion. The splash zone riser is exposed to intermittent seawater wetting. Especially at crevice areas which can form and accelerate small concentration corrosion cells creating indiscernible localized corrosion or deep grooves.
Close visual inspection (CVI) is a conventional nondestructive examination (NDE) technique to notify a sign of corrosion. This is a very subjective and qualitative measurement. Wall loss, depth, and sizing are unknown. In order to identify the condition underneath the riser clamp without clamp removal, the company has studied the principle of advanced NDE techniques, mockup tests, and field trials. The main objective is to identify, quantify, and prioritize the severity of corrosion anomalies underneath the clamp for further maintenance and repair plans to prevent pipeline failure. The selected techniques are Computed Radiography Testing (CRT), Medium-Range Ultrasonic testing (MRUT), and Long-Range Ultrasonic testing (LRUT). The result shows that LRUT can be further developed to suit the company's purposes.