Classification of COVID-19 Chest X-Ray Images Based on Speeded Up Robust Features and Clustering-Based Support Vector Machines

IF 0.5 Q4 COMPUTER SCIENCE, THEORY & METHODS Applied Computer Systems Pub Date : 2023-06-01 DOI:10.2478/acss-2023-0016
M. Rajab
{"title":"Classification of COVID-19 Chest X-Ray Images Based on Speeded Up Robust Features and Clustering-Based Support Vector Machines","authors":"M. Rajab","doi":"10.2478/acss-2023-0016","DOIUrl":null,"url":null,"abstract":"Abstract Due to the worldwide deficiency of medical test kits and the significant time required by radiology experts to identify the new COVID-19, it is essential to develop fast, robust, and intelligent chest X-ray (CXR) image classification system. The proposed method consists of two major components: feature extraction and classification. The Bag of image features algorithm creates visual vocabulary from two training data categories of chest X-ray images: Normal and COVID-19 patients’ datasets. The algorithm extracts salient features and descriptors from CXR images using the Speeded Up Robust Features (SURF) algorithm. Machine learning with the Clustering-Based Support Vector Machines (CB-SVMs) multiclass classifier is trained using SURF features to classify the CXR image categories. The careful collection of ground truth Normal and COVID-19 CXR datasets, provided by worldwide expert radiologists, has certainly influenced the performance of the proposed CB-SVMs classifier to preserve the generalization capabilities. The high classification accuracy of 99 % demonstrates the effectiveness of the proposed method, where the accuracy is assessed on an independent test sets.","PeriodicalId":41960,"journal":{"name":"Applied Computer Systems","volume":"8 1","pages":"163 - 169"},"PeriodicalIF":0.5000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Computer Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/acss-2023-0016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 1

Abstract

Abstract Due to the worldwide deficiency of medical test kits and the significant time required by radiology experts to identify the new COVID-19, it is essential to develop fast, robust, and intelligent chest X-ray (CXR) image classification system. The proposed method consists of two major components: feature extraction and classification. The Bag of image features algorithm creates visual vocabulary from two training data categories of chest X-ray images: Normal and COVID-19 patients’ datasets. The algorithm extracts salient features and descriptors from CXR images using the Speeded Up Robust Features (SURF) algorithm. Machine learning with the Clustering-Based Support Vector Machines (CB-SVMs) multiclass classifier is trained using SURF features to classify the CXR image categories. The careful collection of ground truth Normal and COVID-19 CXR datasets, provided by worldwide expert radiologists, has certainly influenced the performance of the proposed CB-SVMs classifier to preserve the generalization capabilities. The high classification accuracy of 99 % demonstrates the effectiveness of the proposed method, where the accuracy is assessed on an independent test sets.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于加速鲁棒特征和聚类支持向量机的COVID-19胸部x射线图像分类
由于医学检测试剂盒在全球范围内缺乏,且放射学专家需要大量时间来识别新型COVID-19,因此开发快速、健壮、智能的胸部x射线(CXR)图像分类系统势在必行。该方法主要由特征提取和分类两部分组成。图像特征包算法从胸部x射线图像的两个训练数据类别(正常和COVID-19患者数据集)中创建视觉词汇表。该算法采用加速鲁棒特征(SURF)算法从CXR图像中提取显著特征和描述符。利用SURF特征训练基于聚类支持向量机(cb - svm)的机器学习多类分类器对CXR图像类别进行分类。由全球专家放射科医生提供的地面真实正常和COVID-19 CXR数据集的仔细收集肯定会影响所提出的cb - svm分类器的性能,以保持泛化能力。99%的高分类准确率证明了所提出方法的有效性,其中准确度是在独立的测试集上评估的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Computer Systems
Applied Computer Systems COMPUTER SCIENCE, THEORY & METHODS-
自引率
10.00%
发文量
9
审稿时长
30 weeks
期刊最新文献
Multimodal Biometric System Based on the Fusion in Score of Fingerprint and Online Handwritten Signature Multichannel Approach for Sentiment Analysis Using Stack of Neural Network with Lexicon Based Padding and Attention Mechanism BRS-based Model for the Specification of Multi-view Point Ontology Empirical Analysis of Supervised and Unsupervised Machine Learning Algorithms with Aspect-Based Sentiment Analysis Approximate Nearest Neighbour-based Index Tree: A Case Study for Instrumental Music Search
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1