{"title":"Does the Solution to the Non-linear Diophantine Equation 3x+35y=Z2 Exist?","authors":"D. Biswas","doi":"10.3329/jsr.v14i3.58535","DOIUrl":null,"url":null,"abstract":"This paper investigates the solutions (if any) of the Diophantine equation 3x + 35y = Z2, where , x, y, and z are whole numbers. Diophantine equations are drawing the attention of researchers in diversified fields over the years. These are equations that have more unknowns than a number of equations. Diophantine equations are found in cryptography, chemistry, trigonometry, astronomy, and abstract algebra. The absence of any generalized method by which each Diophantine equation can be solved is a challenge for researchers. In the present communication, it is found with the help of congruence theory and Catalan’s conjecture that the Diophantine equation 3x + 35y = Z2 has only two solutions of (x, y, z) as (1, 0, 2) and (0, 1, 6) in non-negative integers.","PeriodicalId":16984,"journal":{"name":"JOURNAL OF SCIENTIFIC RESEARCH","volume":"65 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOURNAL OF SCIENTIFIC RESEARCH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3329/jsr.v14i3.58535","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the solutions (if any) of the Diophantine equation 3x + 35y = Z2, where , x, y, and z are whole numbers. Diophantine equations are drawing the attention of researchers in diversified fields over the years. These are equations that have more unknowns than a number of equations. Diophantine equations are found in cryptography, chemistry, trigonometry, astronomy, and abstract algebra. The absence of any generalized method by which each Diophantine equation can be solved is a challenge for researchers. In the present communication, it is found with the help of congruence theory and Catalan’s conjecture that the Diophantine equation 3x + 35y = Z2 has only two solutions of (x, y, z) as (1, 0, 2) and (0, 1, 6) in non-negative integers.