Simulation Analysis of Effect of Vacancies on Ferroic Domain Growth of BaTiO^3

T. Tsuzuki, S. Ogata, R. Kobayashi, Masayuki Uranagase, Seiya Shimoi, Saki Tsujimoto
{"title":"Simulation Analysis of Effect of Vacancies on Ferroic Domain Growth of BaTiO^3","authors":"T. Tsuzuki, S. Ogata, R. Kobayashi, Masayuki Uranagase, Seiya Shimoi, Saki Tsujimoto","doi":"10.46300/9106.2021.15.197","DOIUrl":null,"url":null,"abstract":"BaTiO3 is one of the well-known ferroelectric and piezoelectric materials, which has been widely used in various devices. However, the microscopic mechanism of the ferroelectric domain growth is not understood well. We investigated the effects of point defects, mono- and di-vacancies of Ba, Ti, and O, on the domain growth of BaTiO3 using molecular dynamics simulation with the core-shell inter-atomic potential. We found the following: s(1) One kind of monovacancy, VO1, located on the TiO plane perpendicular to the applied electric field direction, acts to hinder the polarization inversion induced by the applied electric field. The monopole electric field produced by VO1 either hinders or assists the local polarization inversion in accordance with the local intensity of the total electric field. (2) The 1st-neighbor divacancies VBa-VO and VTi-VO as compared to the 2nd-neighbor divacancies asymmetrically affect the domain growth with respect to the applied electric field, making the hysteresis behavior of applied electric field vs. polarization relation. The domain grows even at a small electric field when the directions of the applied electric field and the divacancy dipole are mutually the same. (3) The domain growth speed towards the applied electric field direction is about 2 orders of magnitude higher than that towards the perpendicular direction.","PeriodicalId":13929,"journal":{"name":"International Journal of Circuits, Systems and Signal Processing","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Circuits, Systems and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46300/9106.2021.15.197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 1

Abstract

BaTiO3 is one of the well-known ferroelectric and piezoelectric materials, which has been widely used in various devices. However, the microscopic mechanism of the ferroelectric domain growth is not understood well. We investigated the effects of point defects, mono- and di-vacancies of Ba, Ti, and O, on the domain growth of BaTiO3 using molecular dynamics simulation with the core-shell inter-atomic potential. We found the following: s(1) One kind of monovacancy, VO1, located on the TiO plane perpendicular to the applied electric field direction, acts to hinder the polarization inversion induced by the applied electric field. The monopole electric field produced by VO1 either hinders or assists the local polarization inversion in accordance with the local intensity of the total electric field. (2) The 1st-neighbor divacancies VBa-VO and VTi-VO as compared to the 2nd-neighbor divacancies asymmetrically affect the domain growth with respect to the applied electric field, making the hysteresis behavior of applied electric field vs. polarization relation. The domain grows even at a small electric field when the directions of the applied electric field and the divacancy dipole are mutually the same. (3) The domain growth speed towards the applied electric field direction is about 2 orders of magnitude higher than that towards the perpendicular direction.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
空位对BaTiO^3铁畴生长影响的模拟分析
BaTiO3是一种众所周知的铁电和压电材料,广泛应用于各种器件中。然而,铁电畴生长的微观机制尚不清楚。利用核壳原子间势的分子动力学模拟研究了Ba、Ti和O的点缺陷、单空位和双空位对BaTiO3结构域生长的影响。结果表明:(1)垂直于外加电场方向的TiO平面上存在一种单空位VO1,对外加电场引起的极化反转起抑制作用。根据总电场的局域强度,VO1产生的单极电场或阻碍或促进局域极化反转。(2)与第二邻差相比,第一邻差VBa-VO和VTi-VO对外加电场的畴生长有不对称的影响,使得外加电场的迟滞行为与极化关系。当外加电场的方向与距离偶极子的方向相同时,即使在很小的电场下,畴也会生长。(3)向外加电场方向的畴生长速度比向垂直方向的畴生长速度高2个数量级。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Circuits, Systems and Signal Processing
International Journal of Circuits, Systems and Signal Processing Engineering-Electrical and Electronic Engineering
自引率
0.00%
发文量
155
期刊最新文献
Stochastic Machine Learning Models for Mutation Rate Analysis of Malignant Cancer Cells in Patients with Acute Lymphoblastic Leukemia Detecting Small Objects Using a Smartphone and Neon Camera Optimization of New Energy Vehicle Road Noise Problem Based on Finite Element Analysis Method Base Elements for Artificial Neural Network: Structure Modeling, Production, Properties Distributed Generation Hosting Capacity Evaluation for Distribution Networks Considering Uncertainty
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1