Determination Rule for α, β Directions and φ in Teaching of Slip-Line Theory

IF 0.8 Q3 ENGINEERING, MULTIDISCIPLINARY Modelling and Simulation in Engineering Pub Date : 2023-02-02 DOI:10.1155/2023/8863386
R. Mei, L. Bao, Han Gao, Xin Zhang
{"title":"Determination Rule for α, β Directions and φ in Teaching of Slip-Line Theory","authors":"R. Mei, L. Bao, Han Gao, Xin Zhang","doi":"10.1155/2023/8863386","DOIUrl":null,"url":null,"abstract":"In the teaching of plastic mechanics and applications of slip-line theory using conventional methods, multivalued results are usually caused by the uncertain direction of the slip line and dip angles. Determination rules for the α and β directions and φ values are proposed to improve slip-line theory according to the particle flow law under the effect of principal stress, and slip lines and dip angles suitable for a typical stress boundary problem are described. The α and β slip lines should simultaneously point to or away from the intersection, and the synthetic direction of the slip lines should point to the first principal stress σ1 or away from the direction of the third principal stress σ3. When the Hencky stress equation of the α line is applied, two points on the α line should maintain the same direction, and the absolute value of the φ difference should be less than or equal to π. Moreover, the α line of two points should simultaneously point to the inner and outer normal direction of the β line when the Hencky stress equation of the β line is used. The average stress and critical load of plastic deformation in the plane lath V-notch tension are solved using slip-line theory. Both the calculated critical stress and the load maintain uniformity using different slip lines and dip angles, and the proposed determination rule reliably avoids multivalued solutions. This is important for students and researchers in correctly understanding and applying slip-line theory.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/8863386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In the teaching of plastic mechanics and applications of slip-line theory using conventional methods, multivalued results are usually caused by the uncertain direction of the slip line and dip angles. Determination rules for the α and β directions and φ values are proposed to improve slip-line theory according to the particle flow law under the effect of principal stress, and slip lines and dip angles suitable for a typical stress boundary problem are described. The α and β slip lines should simultaneously point to or away from the intersection, and the synthetic direction of the slip lines should point to the first principal stress σ1 or away from the direction of the third principal stress σ3. When the Hencky stress equation of the α line is applied, two points on the α line should maintain the same direction, and the absolute value of the φ difference should be less than or equal to π. Moreover, the α line of two points should simultaneously point to the inner and outer normal direction of the β line when the Hencky stress equation of the β line is used. The average stress and critical load of plastic deformation in the plane lath V-notch tension are solved using slip-line theory. Both the calculated critical stress and the load maintain uniformity using different slip lines and dip angles, and the proposed determination rule reliably avoids multivalued solutions. This is important for students and researchers in correctly understanding and applying slip-line theory.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
滑移线理论教学中α、β方向和φ的确定规则
在塑性力学教学和滑移线理论应用的常规方法中,滑移线方向和倾角的不确定往往会导致多值结果。根据主应力作用下的颗粒流动规律,提出了α、β方向和φ值的确定规则,以改进滑移线理论,并描述了适合典型应力边界问题的滑移线和倾角。α、β滑移线应同时指向或远离交点,滑移线的合成方向应指向第一主应力σ1或远离第三主应力σ3方向。应用α线上的henky应力方程时,α线上两点应保持同一方向,且φ差的绝对值应小于等于π。采用β线的Hencky应力方程时,两点的α线应同时指向β线的内外法线方向。利用滑移线理论求解了平面板条v形缺口拉伸时塑性变形的平均应力和临界载荷。在不同滑移线和倾角条件下,计算的临界应力和荷载均保持均匀性,所提出的确定规则可靠地避免了多值解。这对于学生和研究者正确理解和应用滑移线理论具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Modelling and Simulation in Engineering
Modelling and Simulation in Engineering ENGINEERING, MULTIDISCIPLINARY-
CiteScore
2.70
自引率
3.10%
发文量
42
审稿时长
18 weeks
期刊介绍: Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.
期刊最新文献
Finite Element Modelling and Simulation of Tunnel Gates of Dam Structures in ABAQUS Using Reduced-Integrated 8-Node Hexahedral Solid-Shell Element Modeling and Simulation of the Effect of Airbag Thickness on the Performance of Extended Handle Pneumatic Floor Jack Assessment of Fractional and Integer Order Models of Induction Motor Using MATLAB/Simulink State of the Art of Modelling and Design Approaches for Ejectors in Proton Exchange Membrane Fuel Cell Predictive Modeling of Environmental Impact on Drone Datalink Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1