Fine-Grained Processing Towards HL-LHC Computing in ATLAS

D. Benjamin, P. Calafiura, T. Childers, K. De, A. Girolamo, E. Fullana, W. Guan, T. Maeno, Nicolò Magini, P. Nilsson, D. Oleynik, Shaojun Sun, V. Tsulaia, P. Gemmeren, T. Wenaus, W. Yang
{"title":"Fine-Grained Processing Towards HL-LHC Computing in ATLAS","authors":"D. Benjamin, P. Calafiura, T. Childers, K. De, A. Girolamo, E. Fullana, W. Guan, T. Maeno, Nicolò Magini, P. Nilsson, D. Oleynik, Shaojun Sun, V. Tsulaia, P. Gemmeren, T. Wenaus, W. Yang","doi":"10.1109/eScience.2018.00083","DOIUrl":null,"url":null,"abstract":"During LHC's Run-2 ATLAS has been developing and evaluating new fine-grained approaches to workflows and dataflows able to better utilize computing resources in terms of storage, processing and networks. The compute-limited physics of ATLAS has driven the collaboration to aggressively harvest opportunistic cycles from what are often transiently available resources, including HPCs, clouds, volunteer computing, and grid resources in transitional states. Fine-grained processing (with typically a few minutes' granularity, corresponding to one event for the present ATLAS full simulation) enables agile workflows with a light footprint on the resource such that cycles can be more fully and efficiently utilized than with conventional workflows processing O(GB) files per job.","PeriodicalId":6476,"journal":{"name":"2018 IEEE 14th International Conference on e-Science (e-Science)","volume":"1 1","pages":"338-338"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 14th International Conference on e-Science (e-Science)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eScience.2018.00083","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

During LHC's Run-2 ATLAS has been developing and evaluating new fine-grained approaches to workflows and dataflows able to better utilize computing resources in terms of storage, processing and networks. The compute-limited physics of ATLAS has driven the collaboration to aggressively harvest opportunistic cycles from what are often transiently available resources, including HPCs, clouds, volunteer computing, and grid resources in transitional states. Fine-grained processing (with typically a few minutes' granularity, corresponding to one event for the present ATLAS full simulation) enables agile workflows with a light footprint on the resource such that cycles can be more fully and efficiently utilized than with conventional workflows processing O(GB) files per job.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ATLAS中HL-LHC计算的细粒度处理
在LHC Run-2期间,ATLAS一直在开发和评估新的细粒度工作流和数据流方法,这些方法能够更好地利用存储、处理和网络方面的计算资源。ATLAS的计算有限的物理特性促使协作积极地从通常是暂时可用的资源中获取机会周期,包括hpc、云、志愿计算和过渡状态的网格资源。细粒度处理(通常为几分钟的粒度,对应于当前ATLAS完整模拟的一个事件)使灵活的工作流对资源的占用很少,这样与每个作业处理0 (GB)文件的传统工作流相比,可以更充分、更有效地利用周期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Occam: Software Environment for Creating Reproducible Research Smart Data Scouting in Professional Soccer: Evaluating Passing Performance Based on Position Tracking Data Improving LBFGS Optimizer in PyTorch: Knowledge Transfer from Radio Interferometric Calibration to Machine Learning Nordic Exome Variant Catalogue a Web Resource for Genomic Data Browsing Survey on Research Software Engineering in the Netherlands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1