Time-Varying Coefficient Spatial Autoregressive Panel Data Model with Fixed Effects

Xuan Liang, Jiti Gao, X. Gong
{"title":"Time-Varying Coefficient Spatial Autoregressive Panel Data Model with Fixed Effects","authors":"Xuan Liang, Jiti Gao, X. Gong","doi":"10.2139/ssrn.3484289","DOIUrl":null,"url":null,"abstract":"This paper develops a time-varying coefficient spatial autoregressive panel data model with the individual fixed effects to capture the nonlinear effects of the regressors, which vary over the time. To effectively estimate the model, we propose a method that incorporates the nonparametric local linear method and the concentrated quasi-maximum likelihood estimation method to obtain consistent estimators for the spatial coefficient and the time-varying coefficient function. The asymptotic properties of these estimators are derived as well, showing the regular sqrt(NT)-rate of convergence for the parametric parameters and the common sqrt(NTh)-rate of convergence for the nonparametric component, respectively. Monte Carlo simulations are conducted to illustrate the finite sample performance of our proposed method. Meanwhile, we apply our method to study the Chinese labor productivity to identify the spatial influences and the time-varying spillover effects among 185 Chinese cities with comparison to the results on a subregion East China.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"28 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3484289","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper develops a time-varying coefficient spatial autoregressive panel data model with the individual fixed effects to capture the nonlinear effects of the regressors, which vary over the time. To effectively estimate the model, we propose a method that incorporates the nonparametric local linear method and the concentrated quasi-maximum likelihood estimation method to obtain consistent estimators for the spatial coefficient and the time-varying coefficient function. The asymptotic properties of these estimators are derived as well, showing the regular sqrt(NT)-rate of convergence for the parametric parameters and the common sqrt(NTh)-rate of convergence for the nonparametric component, respectively. Monte Carlo simulations are conducted to illustrate the finite sample performance of our proposed method. Meanwhile, we apply our method to study the Chinese labor productivity to identify the spatial influences and the time-varying spillover effects among 185 Chinese cities with comparison to the results on a subregion East China.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
固定效应时变系数空间自回归面板数据模型
本文建立了一个具有个体固定效应的时变系数空间自回归面板数据模型,以捕捉随时间变化的回归量的非线性效应。为了有效地估计模型,我们提出了一种结合非参数局部线性方法和集中拟极大似然估计方法来获得空间系数和时变系数函数的一致估计量的方法。这些估计量的渐近性质也得到了推导,分别给出了参数分量的正则sqrt(NT)-收敛速率和非参数分量的普通sqrt(NTh)-收敛速率。通过蒙特卡罗仿真验证了该方法的有限样本性能。同时,本文以中国185个城市为研究对象,对中国劳动生产率的空间影响和时变溢出效应进行了分析,并与华东地区进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hawkes-driven stochastic volatility models: goodness-of-fit testing of alternative intensity specifications with S&P500 data Identification of Factor Risk Premia Herding in Probabilistic Forecasts Efficient Bias Robust Cross Section Factor Models Multi-factor, Age-Cohort, Affine Mortality Models: A Multi-Country Comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1