Learning Deep Dynamical Models of a Waste Incineration Plant from In-furnace Images and Process Data

T. Kaneko, Yoshihisa Tsurumine, James Poon, Y. Onuki, Yingda Dai, Kaoru Kawabata, Takamitsu Matsubara
{"title":"Learning Deep Dynamical Models of a Waste Incineration Plant from In-furnace Images and Process Data","authors":"T. Kaneko, Yoshihisa Tsurumine, James Poon, Y. Onuki, Yingda Dai, Kaoru Kawabata, Takamitsu Matsubara","doi":"10.1109/COASE.2019.8842972","DOIUrl":null,"url":null,"abstract":"This paper presents an approach for predicting in-furnace images and sensor signal readings for a waste incineration plant, utilizing a deep dynamical model based on Kalman Variational Auto-Encoders that considers a range of process signals, control inputs, and time-series sequences of infurnace image data. This is motivated by the need for automatic control systems to be able to anticipate abnormalities in incoming waste to prevent potential instabilities during and after combustion. Experimental results with real plant data show that the proposed strategy provides an improved prediction accuracy for both process signals and in-furnace images compared to a Long Short-Term Memory neural network.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"44 1","pages":"873-878"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8842972","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an approach for predicting in-furnace images and sensor signal readings for a waste incineration plant, utilizing a deep dynamical model based on Kalman Variational Auto-Encoders that considers a range of process signals, control inputs, and time-series sequences of infurnace image data. This is motivated by the need for automatic control systems to be able to anticipate abnormalities in incoming waste to prevent potential instabilities during and after combustion. Experimental results with real plant data show that the proposed strategy provides an improved prediction accuracy for both process signals and in-furnace images compared to a Long Short-Term Memory neural network.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从炉内图像和过程数据学习垃圾焚烧厂的深度动态模型
本文提出了一种预测垃圾焚烧厂炉内图像和传感器信号读数的方法,利用基于卡尔曼变分自编码器的深度动态模型,该模型考虑了一系列过程信号、控制输入和炉内图像数据的时间序列序列。这是由于需要自动控制系统能够预测进入废物的异常情况,以防止燃烧期间和燃烧后的潜在不稳定。实验结果表明,与长短期记忆神经网络相比,该方法对过程信号和炉内图像的预测精度都有提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A proposed mapping method for aligning machine execution data to numerical control code optimizing outpatient Department Staffing Level using Multi-Fidelity Models Advanced Sensor and Target Development to Support Robot Accuracy Degradation Assessment Multi-Task Hierarchical Imitation Learning for Home Automation Deep Reinforcement Learning of Robotic Precision Insertion Skill Accelerated by Demonstrations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1