{"title":"On the Global Contrasting Temperature-Precipitation Phase Mechanisms in the Last Century","authors":"A. P. Dimri, Pankaj Kumar, P. Maharana","doi":"10.3233/jcc210015","DOIUrl":null,"url":null,"abstract":"Global precipitation patterns have changed compared to the before 1960 (pre-industrial period). By now the temperature has risen by approximately 1°C. The atmospheric heat-retaining constituents have been raised by human-induced activities. It is influencing the composition of the atmospheric gases and water vapour leading to tropospheric energy budget imbalance affecting atmospheric pressure systems. Increased atmospheric warming leads water holding capacity to rise. Such changes insinuated contrasting phases: decreased (increased) temperature- increased (decreased) precipitation in the last century. Mechanisms of these in- and out- phases are investigated. In the total four (two colder-wet and two warmer-dry) global conditions are observed. These time slices indicate a gradual increase in global temperature and a decrease in precipitation. Clausius-Clapeyron relation suggests abrupt warming and increased water vapour pressure in recent decades. In addition, the global climate system is shifting towards abnormal warm-wet or warm-dry conditions. Further, contrasting changes in global precipitation have been seen, in particular after 1960 (post-industrial period). It is significantly noted that there has been a global contrasting temperature-precipitation phase mechanism in the last century.","PeriodicalId":43177,"journal":{"name":"Journal of Climate Change","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2021-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/jcc210015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Global precipitation patterns have changed compared to the before 1960 (pre-industrial period). By now the temperature has risen by approximately 1°C. The atmospheric heat-retaining constituents have been raised by human-induced activities. It is influencing the composition of the atmospheric gases and water vapour leading to tropospheric energy budget imbalance affecting atmospheric pressure systems. Increased atmospheric warming leads water holding capacity to rise. Such changes insinuated contrasting phases: decreased (increased) temperature- increased (decreased) precipitation in the last century. Mechanisms of these in- and out- phases are investigated. In the total four (two colder-wet and two warmer-dry) global conditions are observed. These time slices indicate a gradual increase in global temperature and a decrease in precipitation. Clausius-Clapeyron relation suggests abrupt warming and increased water vapour pressure in recent decades. In addition, the global climate system is shifting towards abnormal warm-wet or warm-dry conditions. Further, contrasting changes in global precipitation have been seen, in particular after 1960 (post-industrial period). It is significantly noted that there has been a global contrasting temperature-precipitation phase mechanism in the last century.