Finger Type Classification with Deep Convolution Neural Networks

Yousif Ahmed Al-Wajih, W. Hamanah, M. Abido, Fouad Al-Sunni, Fakhraddin Alwajih
{"title":"Finger Type Classification with Deep Convolution Neural Networks","authors":"Yousif Ahmed Al-Wajih, W. Hamanah, M. Abido, Fouad Al-Sunni, Fakhraddin Alwajih","doi":"10.5220/0011327100003271","DOIUrl":null,"url":null,"abstract":": The Automated Fingerprint Identification System (AFIS) is a biometric identification methodology that uses digital imaging technology to obtain, store, and analyse fingerprint information. There has been an increased interest in fingerprint-based security systems with the rise in demand for collecting demographic data through security applications. Reliable and highly secure, these systems are used to identify people using the unique biometric information of fingerprints. In this work, a learning-based method of identifying fingerprints was investigated. Using deep learning tools, the performance of the AFIS in terms of search time and speed of matching between fingerprint databases was successfully enhanced. A convolutional neural network (CNN) model was proposed and developed to classify fingerprints and predict fingerprint types. The proposed classification system is a novel approach that classifies fingerprints based on figure type. Two public datasets were used to train and evaluate the proposed CNN model. The proposed model achieved high validation accuracy with both databases, with an overall accuracy in predicting fingerprint types at around 94%.","PeriodicalId":6436,"journal":{"name":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","volume":"91 1","pages":"247-254"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011327100003271","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

: The Automated Fingerprint Identification System (AFIS) is a biometric identification methodology that uses digital imaging technology to obtain, store, and analyse fingerprint information. There has been an increased interest in fingerprint-based security systems with the rise in demand for collecting demographic data through security applications. Reliable and highly secure, these systems are used to identify people using the unique biometric information of fingerprints. In this work, a learning-based method of identifying fingerprints was investigated. Using deep learning tools, the performance of the AFIS in terms of search time and speed of matching between fingerprint databases was successfully enhanced. A convolutional neural network (CNN) model was proposed and developed to classify fingerprints and predict fingerprint types. The proposed classification system is a novel approach that classifies fingerprints based on figure type. Two public datasets were used to train and evaluate the proposed CNN model. The proposed model achieved high validation accuracy with both databases, with an overall accuracy in predicting fingerprint types at around 94%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度卷积神经网络的手指类型分类
:自动指纹识别系统(AFIS)是一种生物特征识别方法,利用数码成像技术来获取、储存和分析指纹信息。随着通过安全应用程序收集人口统计数据的需求的增加,人们对基于指纹的安全系统的兴趣越来越大。这些系统可靠且高度安全,使用指纹的独特生物特征信息来识别人。本文研究了一种基于学习的指纹识别方法。利用深度学习工具,成功地提高了指纹数据库间的匹配速度和搜索时间。提出并开发了一种卷积神经网络(CNN)模型,用于指纹分类和指纹类型预测。该分类系统是一种基于图形类型对指纹进行分类的新方法。使用两个公共数据集来训练和评估所提出的CNN模型。该模型在两种数据库中都获得了很高的验证精度,预测指纹类型的总体精度约为94%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Informatics in Control, Automation and Robotics: 18th International Conference, ICINCO 2021 Lieusaint - Paris, France, July 6–8, 2021, Revised Selected Papers A Digital Twin Setup for Safety-aware Optimization of a Cyber-physical System Segmenting Maps by Analyzing Free and Occupied Regions with Voronoi Diagrams Efficient Verification of CPA Lyapunov Functions Open-loop Control of a Soft Arm in Throwing Tasks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1