Td-VOS: Tracking-Driven Single-Object Video Object Segmentation

Shaopan Xiong, Shengyang Li, Longxuan Kou, Weilong Guo, Zhuang Zhou, Zifei Zhao
{"title":"Td-VOS: Tracking-Driven Single-Object Video Object Segmentation","authors":"Shaopan Xiong, Shengyang Li, Longxuan Kou, Weilong Guo, Zhuang Zhou, Zifei Zhao","doi":"10.1109/ICIVC50857.2020.9177471","DOIUrl":null,"url":null,"abstract":"This paper presents an approach to single-object video object segmentation, only using the first-frame bounding box (without mask) to initialize. The proposed method is a tracking-driven single-object video object segmentation, which combines an effective Box2Segmentation module with a general object tracking module. Just initialize the first frame box, the Box2Segmentation module can obtain the segmentation results based on the predicted tracking bounding box. Evaluations on the single-object video object segmentation dataset DAVIS2016 show that the proposed method achieves a competitive performance with a Region Similarity score of 75.4% and a Contour Accuracy score of 73.1%, only under the settings of first-frame bounding box initialization. The proposed method outperforms SiamMask which is the most competitive method for video object segmentation under the same settings, with Region Similarity score by 5.2% and Contour Accuracy score by 7.8%. Compared with the semi-supervised VOS methods without online fine-tuning initialized by a first frame mask, the proposed method also achieves comparable results.","PeriodicalId":6806,"journal":{"name":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","volume":"51 1","pages":"102-107"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 5th International Conference on Image, Vision and Computing (ICIVC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIVC50857.2020.9177471","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents an approach to single-object video object segmentation, only using the first-frame bounding box (without mask) to initialize. The proposed method is a tracking-driven single-object video object segmentation, which combines an effective Box2Segmentation module with a general object tracking module. Just initialize the first frame box, the Box2Segmentation module can obtain the segmentation results based on the predicted tracking bounding box. Evaluations on the single-object video object segmentation dataset DAVIS2016 show that the proposed method achieves a competitive performance with a Region Similarity score of 75.4% and a Contour Accuracy score of 73.1%, only under the settings of first-frame bounding box initialization. The proposed method outperforms SiamMask which is the most competitive method for video object segmentation under the same settings, with Region Similarity score by 5.2% and Contour Accuracy score by 7.8%. Compared with the semi-supervised VOS methods without online fine-tuning initialized by a first frame mask, the proposed method also achieves comparable results.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Td-VOS:跟踪驱动的单目标视频对象分割
本文提出了一种单目标视频对象分割方法,仅使用第一帧边界框(无掩码)进行初始化。该方法是一种跟踪驱动的单目标视频目标分割方法,它将有效的box2分割模块与通用的目标跟踪模块相结合。只需初始化第一帧框,Box2Segmentation模块就可以根据预测的跟踪边界框得到分割结果。对单目标视频目标分割数据集DAVIS2016的评估表明,仅在第一帧边界框初始化设置下,该方法的区域相似度得分为75.4%,轮廓精度得分为73.1%,具有较强的竞争力。在相同设置下,该方法优于最具竞争力的视频目标分割方法SiamMask,区域相似度得分提高5.2%,轮廓精度得分提高7.8%。与未使用第一帧掩码初始化在线微调的半监督VOS方法相比,该方法也取得了相当的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Online Multi-object Tracking with Siamese Network and Optical Flow Research on Product Style Design Based on Genetic Algorithm Super-Resolution Reconstruction Algorithm of Target Image Based on Learning Background Air Quality Inference with Deep Convolutional Conditional Random Field Feature Point Extraction and Matching Method Based on Akaze in Illumination Invariant Color Space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1