Vanadium(IV) complexes with picolinic acids in NaY zeolite cages Synthesis, characterization and catalytic behaviour

A. I. Kozlov, K. Asakura, Y. Iwasawa
{"title":"Vanadium(IV) complexes with picolinic acids in NaY zeolite cages Synthesis, characterization and catalytic behaviour","authors":"A. I. Kozlov, K. Asakura, Y. Iwasawa","doi":"10.1039/A706679A","DOIUrl":null,"url":null,"abstract":"Encapsulated vanadium picolinic complexes have been synthesized by treatment of a dehydrated form of VO2+-NaY zeolite with molten picolinic acids and characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES), EPR, FTIR and UV–VIS spectroscopies, and XRD. It was suggested by XRD and XPS that the complexes were located in the zeolite cavities. Differences in the spectroscopic properties of encapsulated and impregnated samples were explained in terms of coordination of vanadium complexes with zeolite –OH groups. The stability of VO(pic)2 and its adduct with pyridine depended strongly on the complex location. The encapsulated vanadium picolinate complex retained solution-like activity in the liquid-phase oxidation of hydrocarbons and alcohols with hydrogen peroxide.","PeriodicalId":17286,"journal":{"name":"Journal of the Chemical Society, Faraday Transactions","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1998-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Chemical Society, Faraday Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/A706679A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

Encapsulated vanadium picolinic complexes have been synthesized by treatment of a dehydrated form of VO2+-NaY zeolite with molten picolinic acids and characterized by X-ray photoelectron spectroscopy (XPS), extended X-ray absorption fine structure (EXAFS), X-ray absorption near-edge structure (XANES), EPR, FTIR and UV–VIS spectroscopies, and XRD. It was suggested by XRD and XPS that the complexes were located in the zeolite cavities. Differences in the spectroscopic properties of encapsulated and impregnated samples were explained in terms of coordination of vanadium complexes with zeolite –OH groups. The stability of VO(pic)2 and its adduct with pyridine depended strongly on the complex location. The encapsulated vanadium picolinate complex retained solution-like activity in the liquid-phase oxidation of hydrocarbons and alcohols with hydrogen peroxide.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
NaY分子筛笼中吡啶酸与钒配合物的合成、表征及催化行为
用熔融吡啶酸处理脱水形式的VO2+-NaY沸石,合成了包封吡啶酸钒配合物,并用x射线光电子能谱(XPS)、扩展x射线吸收精细结构(EXAFS)、x射线吸收近边结构(XANES)、EPR、FTIR、UV-VIS光谱和XRD对其进行了表征。XRD和XPS分析表明,配合物位于沸石孔洞中。从钒配合物与沸石-OH基团的配位角度解释了包覆和浸渍样品的光谱特性差异。VO(pic)2及其吡啶加合物的稳定性与配合物的位置密切相关。包封的吡啶酸钒配合物在烃类和醇类的过氧化氢液相氧化中保持了溶液般的活性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Very low pressure pyrolysis of phenylacetic acid Photophysics and photoreactivity of substituted thioxanthones Hydrogen bonding Part 44 Thermodynamics of complexation of 3,5-dichlorophenol with ketones and ethers in cyclohexane: the Badger–Bauer relationship IR spectroscopy of small and weakly interacting molecular probes for acidic and basic zeolites Electron transfer in proteins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1