Towards Multi-Pass Streaming Lower Bounds for Optimal Approximation of Max-Cut

Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, Huacheng Yu
{"title":"Towards Multi-Pass Streaming Lower Bounds for Optimal Approximation of Max-Cut","authors":"Lijie Chen, Gillat Kol, Dmitry Paramonov, Raghuvansh R. Saxena, Zhao Song, Huacheng Yu","doi":"10.1137/1.9781611977554.ch35","DOIUrl":null,"url":null,"abstract":"We consider the Max-Cut problem, asking how much space is needed by a streaming algorithm in order to estimate the value of the maximum cut in a graph. This problem has been extensively studied over the last decade, and we now have a near-optimal lower bound for one-pass streaming algorithms, showing that they require linear space to guarantee a better-than-2 approximation [KKS15, KK19]. This result relies on a lower bound for the cycle-finding problem, showing that it is hard for a one-pass streaming algorithm to find a cycle in a union of matchings. The end-goal of our research is to prove a similar lower bound for multi-pass streaming algorithms that guarantee a better-than-2 approximation for Max-Cut, a highly challenging open problem. In this paper, we take a significant step in this direction, showing that even o(log n)-pass streaming algorithms need nΩ(1) space to solve the cycle-finding problem. Our proof is quite involved, dividing the cycles in the graph into “short” and “long” cycles, and using tailor-made lower bound techniques to handle each case. ∗UC Berkeley. †Princeton University. ‡Princeton University. §Microsoft Research. ¶Adobe Research. ‖Princeton University. ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Report No. 161 (2022)","PeriodicalId":11639,"journal":{"name":"Electron. Colloquium Comput. Complex.","volume":"276 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electron. Colloquium Comput. Complex.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611977554.ch35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We consider the Max-Cut problem, asking how much space is needed by a streaming algorithm in order to estimate the value of the maximum cut in a graph. This problem has been extensively studied over the last decade, and we now have a near-optimal lower bound for one-pass streaming algorithms, showing that they require linear space to guarantee a better-than-2 approximation [KKS15, KK19]. This result relies on a lower bound for the cycle-finding problem, showing that it is hard for a one-pass streaming algorithm to find a cycle in a union of matchings. The end-goal of our research is to prove a similar lower bound for multi-pass streaming algorithms that guarantee a better-than-2 approximation for Max-Cut, a highly challenging open problem. In this paper, we take a significant step in this direction, showing that even o(log n)-pass streaming algorithms need nΩ(1) space to solve the cycle-finding problem. Our proof is quite involved, dividing the cycles in the graph into “short” and “long” cycles, and using tailor-made lower bound techniques to handle each case. ∗UC Berkeley. †Princeton University. ‡Princeton University. §Microsoft Research. ¶Adobe Research. ‖Princeton University. ISSN 1433-8092 Electronic Colloquium on Computational Complexity, Report No. 161 (2022)
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多通道流下限的最优逼近Max-Cut
我们考虑最大切割问题,询问流算法需要多少空间才能估计图中最大切割的值。在过去的十年中,这个问题得到了广泛的研究,我们现在有了单次流算法的近最优下界,表明它们需要线性空间来保证优于2的近似[KKS15, KK19]。该结果依赖于循环查找问题的下界,表明单遍流算法很难在匹配的并集中找到循环。我们研究的最终目标是证明多通道流算法的类似下界,以保证Max-Cut的近似优于2,这是一个非常具有挑战性的开放问题。在本文中,我们在这个方向上迈出了重要的一步,表明即使o(log n)次流算法也需要nΩ(1)空间来解决寻环问题。我们的证明相当复杂,将图中的周期划分为“短”和“长”周期,并使用定制的下界技术来处理每种情况。∗加州大学伯克利分校。__普林斯顿大学。‡普林斯顿大学。§微软研究院。¶Adobe的研究。为普林斯顿大学。计算复杂性电子学术讨论会,报告No. 161 (2022)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dependency schemes in CDCL-based QBF solving: a proof-theoretic study On blocky ranks of matrices Fractional Linear Matroid Matching is in quasi-NC Aaronson-Ambainis Conjecture Is True For Random Restrictions Optimal Pseudorandom Generators for Low-Degree Polynomials Over Moderately Large Fields
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1