cgmOLAP: Efficient Parallel Generation and Querying of Terabyte Size ROLAP Data Cubes

Ying Chen, A. Rau-Chaplin, F. Dehne, Todd Eavis, D. Green, E. Sithirasenan
{"title":"cgmOLAP: Efficient Parallel Generation and Querying of Terabyte Size ROLAP Data Cubes","authors":"Ying Chen, A. Rau-Chaplin, F. Dehne, Todd Eavis, D. Green, E. Sithirasenan","doi":"10.1109/ICDE.2006.32","DOIUrl":null,"url":null,"abstract":"We present the cgmOLAP server, the first fully functional parallel OLAP system able to build data cubes at a rate of more than 1 Terabyte per hour. cgmOLAP incorporates a variety of novel approaches for the parallel computation of full cubes, partial cubes, and iceberg cubes as well as new parallel cube indexing schemes. The cgmOLAP system consists of an application interface, a parallel query engine, a parallel cube materialization engine, meta data and cost model repositories, and shared server components that provide uniform management of I/O, memory, communications, and disk resources.","PeriodicalId":6819,"journal":{"name":"22nd International Conference on Data Engineering (ICDE'06)","volume":"29 1","pages":"164-164"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference on Data Engineering (ICDE'06)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDE.2006.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

We present the cgmOLAP server, the first fully functional parallel OLAP system able to build data cubes at a rate of more than 1 Terabyte per hour. cgmOLAP incorporates a variety of novel approaches for the parallel computation of full cubes, partial cubes, and iceberg cubes as well as new parallel cube indexing schemes. The cgmOLAP system consists of an application interface, a parallel query engine, a parallel cube materialization engine, meta data and cost model repositories, and shared server components that provide uniform management of I/O, memory, communications, and disk resources.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Terabyte大小的ROLAP数据立方体的高效并行生成和查询
我们介绍了cgmOLAP服务器,这是第一个功能齐全的并行OLAP系统,能够以每小时超过1 tb的速度构建数据集。cgmOLAP结合了各种新的方法来并行计算全立方体、部分立方体和冰山立方体,以及新的并行立方体索引方案。cgmOLAP系统包括一个应用程序接口、一个并行查询引擎、一个并行多维数据集实体化引擎、元数据和成本模型存储库,以及提供I/O、内存、通信和磁盘资源统一管理的共享服务器组件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Approach to Adaptive Memory Management in Data Stream Systems Revision Processing in a Stream Processing Engine: A High-Level Design SUBSKY: Efficient Computation of Skylines in Subspaces How to Determine a Good Multi-Programming Level for External Scheduling Warehousing and Analyzing Massive RFID Data Sets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1